Geometrie 1

  • Im Raum sind die Eckpunkte eines Dreiecks \(ABC\) gegeben, das weder gleichschenklig noch rechtwinklig ist. Beschreiben Sie in mehreren Teilschritten einen Weg zur Ermittlung der Koordinaten eines Punktes \(D\), durch den sich das Dreieck zum Drachenviereck \(ABCD\) ergänzen lässt.

    (4 BE)

  • Berechnen Sie den Abstand des Punktes \(P\,(2|3|-3)\) von \(E\).

    (3 BE)

  • Gegeben ist die Ebene \(E\;\colon\,2x_1 - x_2 + 2x_3 = 4\).

    Die Ebene \(E\) schneidet die \(x_1x_2\)-Ebene in der Geraden \(g\). Bestimmen Sie eine Gleichung von \(g\)

    (3 BE)

  • Der Bohrkanal wird geradlinig verlängert und verlässt die wasserführende Gesteinsschicht in einer Tiefe von 3600 m unter der Erdoberfläche. Die Austrittsstelle wird im Modell als Punkt \(R\) auf der Geraden \(PQ\) beschrieben. Bestimmen Sie die Koordinaten von \(R\) und ermitteln Sie die Dicke der wasserführenden Gesteinsschicht auf Meter gerundet.

    (zur Kontrolle: \(x_{1}\)- und \(x_{2}\)-Koordinate von \(R\): \(1{,}04\))

    (6 BE)

  • Gegeben ist außerdem die Schar der Geraden \(h_a \colon \overrightarrow{X} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \mu \cdot \begin{pmatrix} 1 \\ a \\ 0 \end{pmatrix}\) mit \(\mu \in \mathbb R\) und \(a \in \mathbb R\). Weisen Sie nach, dass \(g\) und \(h_a\) für jeden Wert von \(a\) windschief sind.

    (3 BE) 

  • Der Schattenbereich der gesamten Pyramide auf dem Boden besteht im Modell aus zwei kongruenten Vierecken. Zeichnen Sie diesen Schattenbereich in Abbildung 3 ein und geben Sie die besondere Form der genannten Vierecke an.

    (4 BE) 

  • Der Punkt \(T(7|10|0)\) liegt auf der Kante \([A_{3}A_{4}]\). Untersuchen Sie rechnerisch, ob es Punkte auf der Kante \([B_{3}B_{4}]\) gibt, für die gilt: Die Verbindungsstrecken des Punktes zu den Punkten \(B_{1}\) und \(T\) stehen aufeinander senkrecht. Geben Sie gegebenenfalls die Koordinaten dieser Punkte an.

    (6 BE)

  • Zeigen Sie, dass die Größe des Winkels \(\beta\) zwischen reflektiertem Lichtstrahl und Einfallslot mit der Größe des Winkels \(\alpha\) zwischen einfallendem Lichtstrahl und Einfallslot übereinstimmt.

    (4 BE)

  • Das Lot zur Ebene \(E\) im Punkt \(R\) wird als Einfallslot bezeichnet.

    Die beiden Geraden, entlang derer der einfallende und der reflektierte Lichtstrahl im Modell verlaufen, liegen in einer Ebene \(F\). Ermitteln Sie eine Gleichung von \(F\) in Normalenform. Weisen Sie nach, dass das Einfallslot ebenfalls in der Ebene \(F\) liegt.

    (mögliches Teilergebnis: \(F\,\colon\, x_1 - x_2 = 0\)) 

    (5 BE)

  • Das Ende der Rechtskurve wird im Koordinatensystem durch den Punkt \(C\) beschrieben. Begründen Sie, dass für den Ortsvektor des Punkts \(C\) gilt: \(\overrightarrow{C} = \overrightarrow{M} + \overrightarrow{v}\).

    (2 BE)

  • Gegeben sind die Punkte \(P(4|5|-19)\), \(Q(5|9|-18)\) und \(R(3|7|-17)\), die in der Ebene \(E\) liegen, sowie die Gerade \(g \colon \overrightarrow{X} = \begin{pmatrix} -12 \\ 11 \\ 0 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \; \lambda \in \mathbb R\).

    Bestimmen Sie die Länge der Strecke \([PQ]\). Zeigen Sie, dass das Dreieck \(PQR\) bei \(R\) rechtwinklig ist, und begründen Sie damit, dass die Strecke \([PQ]\) Durchmesser des Umkreises des Dreiecks \(PQR\) ist.

    (zur Kontrolle: \(\overline{PQ} = 3\sqrt{2}\))

    (4 BE)

  • Spiegelt man die Punkte \(A\), \(B\) und \(C\) am Symmetriezentrum \(Z(3|3|3)\), so erhält man die Punkte \(A'\), \(B'\) bzw. \(C'\).

    Beschreiben Sie die Lage der Ebene, in der die Punkte \(A\), \(B\) und \(Z\) liegen, im Koordinatensystem. Zeigen Sie, dass die Strecke \([CC']\) senkrecht auf dieser Ebene steht.

    (3 BE)

  • Gegeben sind die Punkte \(A(2|1|-4)\), \(B(6|1|-12)\) und \(C(0|1|0)\).

    Weisen Sie nach, dass der Punkt \(C\) auf der Geraden \(AB\), nicht aber auf der Strecke \([AB]\) liegt.

    (3 BE)

  • Bei starkem Regen verformt sich das Sonnensegel und hängt durch. Es bildet sich eine sogenannte Wassertasche aus Regenwasser, das nicht abfließen kann. Die Oberseite der Wassertasche verläuft horizontal und ist näherungsweise kreisförmig mit einem Durchmesser von 50 cm. An ihrer tiefsten Stelle ist die Wassertasche 5 cm tief. Vereinfachend wird die Wassertasche als Kugelsegment betrachtet (vgl. Abbildung 2).

    Abbildung 2 Geometrie 1 Mathematik Abitur Bayern 2018 BAbb. 2

    Das Volumen \(V\) eines Kugelsegments kann mit der Formel \(V = \frac{1}{3} \pi h^{2} \cdot (3r - h)\) berechnet werden, wobei \(r\) den Radius der Kugel und \(h\) die Höhe des Kugelsegments bezeichnen. Ermitteln Sie, wie viele Liter Wasser sich in der Wassertasche befinden.

    (zur Kontrolle: \(r = 65\;\sf{cm}\))

    (5 BE)

  • Berechnen Sie das Volumen \(V\) der Pyramide \(ABCDS\).

    (zur Kontrolle: \(V = 72\))

    (2 BE)

  • Die Abbildung zeigt ein gerades Prisma \(ABCDEF\) mit \(A\,(0|0|0)\), \(B\,(8|0|0)\), \(C\,(0|8|0)\) und \(D\,(0|0|4)\).

    Abbildung zu Teilaufgabe 1

    Bestimmen Sie den Abstand der Eckpunkte \(B\) und \(F\).

    (2 BE)

  • Eine Radarstation, deren Position im Modell durch den Punkt \(R\,(20|30|0)\) veranschaulicht wird, erfasst alle Objekte im Luftraum bis zu einer Entfernung von 50 km. Berechnen Sie die Länge der Flugstrecke von \(F_2\) in dem vom Radar erfassten Bereich.

    (6 BE)

  • An den betrachteten geraden Abschnitt der Achterbahn schließt sich - in Fahrtrichtung gesehen - eine Rechtskurve an, die im Modell durch einen Viertelkreis beschrieben wird, der in der Ebene \(E\) verläuft und den Mittelpunkt \(M \left( 0|3\sqrt{2}|2 \right)\) hat.

    Das Lot von \(M\) auf \(g\) schneidet \(g\) im Punkt \(B\). Im Modell stellt \(B\) den Punkt der Achterbahn dar, in dem der gerade Abschnitt endet und die Kurve beginnt. Bestimmen Sie die Koordinaten von \(B\) und berechnen Sie den Kurvenradius im Modell.

    (Teilergebnis: \(B\left( -1|2\sqrt{2}|3 \right)\)) 

    (5 BE)

  • Die Gerade \(g\) berührt die Kugel im Punkt \(B(-3|8|2)\). Ermitteln Sie eine mögliche Gleichung von \(g\).

    (2 BE)

  • Begründen Sie, dass das Viereck \(ABA'B'\) ein Quadrat mit der Seitenlänge \(3\sqrt{2}\) ist.

    (4 BE)