Lineares Gleichungssystem

  • Gegeben sind die Punkte \(A(-3|-1|4)\), \(B(0|6|5)\) und \(C(3|2|1)\).

    a) Prüfen Sie, ob die drei Punkte \(A\), \(B\) und \(C\) auf einer Gerade liegen.

    b) Eine Gleichung der Gerade \(AB\) in Parameterform ist gegeben mit \(AB \colon \overrightarrow{X} = \overrightarrow{A} + \lambda \cdot \overrightarrow{AB}; \; \lambda \in \mathbb R\). Beschreiben Sie ausgehend von dieser Geradengleichung die Strecke [AB].

  • Überprüfen Sie die Vektoren \(\overrightarrow{a} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}\), \(\overrightarrow{b} = \begin{pmatrix} -2 \\ 3 \\ 4 \end{pmatrix}\) und \(\overrightarrow{c} = \begin{pmatrix} 3 \\ -3 \\ 1 \end{pmatrix}\) auf lineare Abhängigkeit und deuten Sie das Ergebnis geometrisch.

  • Bestätigen Sie rechnerisch, dass sich die Flugbahnen der beiden Flugzeuge senkrecht schneiden. Begründen Sie, dass die Flugzeuge dennoch - auch bei unveränderten Flugbahnen - nicht zwingend kollidieren.

    (5 BE)

  • Der Graph \(G_{f}\) einer in \(\mathbb R\) definierten Funktion \(f \colon x \mapsto ax^4 + bx^3\) mit \(a,b \in \mathbb R\) besitzt im Punkt \(O\,(0|0)\) einen Wendepunkt mit waagrechter Tangente.

    \(W\,(1|-1)\) ist ein weiterer Wendepunkt von \(G_{f}\). Bestimmen Sie mithilfe dieser Informationen die Werte von \(a\) und \(b\).

    (Ergebnis: \(a = 1, b = -2\))

    (4 BE)

  • Für genau einen Wert von \(a\) hat die Gerade \(g_{a}\) einen Schnittpunkt mit der \(x_{3}\)-Achse. Ermitteln Sie die Koordinaten dieses Schnittpunkts.

    (3 BE)

  • Die untere Netzkante berührt die Plattform 2 an der Seite, die durch die Strecke \([RT]\) dargestellt wird. Betrachtet wird der untere Eckpunkt des Netzes, der oberhalb der Plattform 2 befestigt ist. Im Modell hat dieser Eckpunkt die Koordinaten \((5|10|h)\) mit einer reellen Zahl \(h > 3\). Die untere Netzkante liegt auf der Geraden \(g \colon \overrightarrow{X} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 5 \\ 10 \\ h - 2 \end{pmatrix}, \; \lambda \in \mathbb R\,\).

    Berechnen Sie den Abstand des betrachteten Eckpunkts von der Plattform 2.

    (5 BE)

  • Die Zufallsgröße \(X\) kann ausschließlich die Werte \(1\), \(4\), \(9\) und \(16\) annehmen. Bekannt sind \(P(X = 9) = 0{,}2\) und \(P(X = 16) = 0{,}1\) sowie der Erwartungswert \(E(X) = 5\). Bestimmen Sie mithilfe eines Ansatzes für den Erwartungswert die Wahrscheinlichkeit \(P(X = 1)\) und \(P(X = 4)\).

    (3 BE)

  • Für \(a \in \mathbb R^{+}\) ist die Gerade \(g_{a} \colon \overrightarrow{X} = \begin{pmatrix} 2{,}5 \\ 0 \\ 3{,}5 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 0 \\ -10a \\ \frac{2}{a} \end{pmatrix}\) mit \(\lambda \in \mathbb R\) gegeben.

    Bestimmen Sie den Wert von \(a\), sodass die Gerade \(g_{a}\) die Würfelfläche \(CDHG\) in ihrem Mittelpunkt schneidet.

    (3 BE)

  • Die Varianz von \(Y\) ist gleich \(\frac{11}{8}\).

    Bestimmen Sie die Werte von \(a\) und \(b\).

    (5 BE)

  • Die Ebene \(F\) schneidet die \(x_{1}x_{2}\)-Ebene in der Geraden \(g\). Bestimmen Sie eine Gleichung von \(g\).

    (zur Kontrolle: \(g \colon \overrightarrow{X} = \begin{pmatrix} 30 \\ 0 \\ 0 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1 \\ -3 \\ 0 \end{pmatrix}, \; \lambda \in \mathbb R\))

    (3 BE)

  • Gegeben ist außerdem die Schar der Geraden \(h_a \colon \overrightarrow{X} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \mu \cdot \begin{pmatrix} 1 \\ a \\ 0 \end{pmatrix}\) mit \(\mu \in \mathbb R\) und \(a \in \mathbb R\). Weisen Sie nach, dass \(g\) und \(h_a\) für jeden Wert von \(a\) windschief sind.

    (3 BE) 

  • Abbildung 1 zeigt den Körper \(ABCDEFGH\), bei dem die quadratische Grundfläche \(ABCD\) parallel zur quadratischen Deckfläche \(EFGH\) liegt. Der Körper ist symmetrisch sowohl bezüglich der \(x_1x_3\)-Ebene als auch bezüglich der \(x_2x_3\)-Ebene. Außerdem werden die Punkte \(S_k(0|0|k)\) mit \(k \in \; ]7;+\infty[\) betrachtet, die Spitzen von Pyramiden \(EFGHS_k\) sind.

    Abbildung 1 Geometrie 1 Prüfungsteil B Mathematik Abitur Bayern 2023Abb. 1

    Bestimmen Sie rechnerisch denjenigen Wert von \(k\), für den die Pyramide \(EFGHS_k\) den Körper \(ABCDEFGH\) zu einer großen Pyramide \(ABCDS_k\) ergänzt.

    (zur Kontrolle: \(k = 19\))

    (2 BE) 

  • An einer Wand im Innenhof der von Antoni Gaudi gestalteten Casa Battló in Barcelona findet man ein Keramikkunstwerk (vgl. Abbildung 1).

    Der annähernd parabelförmige obere Rand des Kunstwerks soll durch den Graphen einer ganzrationalen Funktion modellhaft dargestellt werden. Auf dem Graphen sollen bei Verwendung des eingezeichneten Koordiantensystems die Punkte \(A\,(-2|0)\), \(B\,(2|0)\) und \(C\,(0|5)\) liegen (1 LE entspricht 1m, d.h. das Kunstwerk ist 5m hoch).

    Abbildung 1Abb. 1

    Ermitteln Sie den Term einer in \(\mathbb R\) definierten quadratischen Funktion \(p\), deren Graph durch die Punkte \(A\), \(B\) und \(C\) verläuft.

    (zur Kontrolle: \(p(x) = -1{,}25x^2 + 5\))

    (3 BE)

  • In einem kartesischen Koordinatensystem sind die Geraden \(\displaystyle g\;\colon\, \vec{X} = \begin{pmatrix} 8 \\ 1 \\ 7 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}\), \(\lambda \in \mathbb R\,\), und \(\displaystyle h\;\colon\, \vec{X} = \begin{pmatrix} -1 \\ 5 \\ -9 \end{pmatrix} + \mu \cdot \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}\), \(\mu \in \mathbb R\,\), gegeben. Die Geraden \(g\) und \(h\) schneiden sich im Punkt \(T\).

    Bestimmen Sie die Koordinaten von \(T\).

    (Ergebnis: \(T\,(2|-1|3)\)) 

    (4 BE)