Tangentensteigung

  • Betrachtet werden die folgenden Funktionsterme mit \(r,s \in \mathbb N\):

    \(e(x) = \sqrt{x - r} \qquad \qquad  \\ \)\(f(x) = \ln x \qquad \qquad \\ \)\(\displaystyle g(x) = -\frac{1}{x} + s\)

    Jeder der Terme beschreibt genau einen der folgenden Funktionsgraphen I,II und III. Ordnen Sie die Terme den Graphen zu und geben Sie die Werte der Parameter \(r\) und \(s\) an; begründen Sie jeweils Ihre Antwort.

    Graph I

    Graph II

    Graph III

    (5 BE)

  • An den Graphen der in \(\mathbb R\) definierten Funktion \(s\,\colon x \mapsto x^2\) gibt es genau eine Tangente, deren Neigungswinkel gegen die \(x\)-Achse eine Größe von 135° hat. Geben Sie die Steigung dieser Tangente an und bestimmen Sie anschließend die Gleichung der Tangente.

    (5 BE)

  • Zeichnen Sie die Parabel \(G_h\) - unter Berücksichtigung des Scheitels - im Bereich \(-2 \leq x \leq 4\) in Ihre Zeichnung aus Aufgabe 1d ein. Spiegelt man diesen Teil von \(G_h\) an der Winkelhalbierenden \(w\), so entsteht eine herzförmige Figur; ergänzen Sie Ihre Zeichnung dementsprechend.

    (4 BE)

  • Ermitteln Sie die Gleichung der Tangente an \(G_h\) im Punkt \((-2|h(-2))\). Berechnen Sie den Wert, den das Modell für die Größe des Winkels liefert, den die Blattränder an der Blattspitze einschließen.

    (6 BE)

  • Bestimmen Sie den Term der Ableitungsfunktion \(f'\) von \(f\) und geben Sie die maximale Definitionsmenge von \(f'\) an.

    Bestimmen Sie  \(\lim \limits_{x \, \to \, 6} f'(x)\) und beschreiben Sie, welche Eigenschaft von \(G_f\) aus diesem Ergebnis folgt.

    (zur Kontrolle: \(\displaystyle f'(x) = \frac{1}{\sqrt{12 - 2x}}\))

    (5 BE)

  • Der Verlauf des oberen Blattrands wird in der Nähe der Blattspitze durch das bisher verwendete Modell nicht genau genug dargestellt. Daher soll der obere Blattrand im Modell für \(-2 \leq x \leq 0\) nicht mehr durch \(G_h\), sondern durch den Graphen \(G_k\) einer in \(\mathbb R\) definierten ganzrationalen Funktion \(k\) dritten Grades beschrieben werden. Für die Funktion \(k\) werden die folgenden Bedingungen gewählt (\(k'\) und \(h'\) sind die Ableitungsfunktionen von \(k\) bzw. \(h\)):

    \[\begin{align*} \sf{I} & \quad k(0) = h(0) \\[0.8em] \sf{II} & \quad k'(0) = h'(0) \\[0.8em] \sf{III} & \quad k(-2) = h(-2) \\[0.8em] \sf{IV} & \quad k'(-2) = 1{,}5 \end{align*}\]

    Begründen Sie im Sachzusammenhang, dass die Wahl der Bedingungen I, II und III sinnvoll ist. Machen Sie plausibel, dass die Bedingung IV dazu führt, dass die Form des Blatts in der Nähe der Blattspitze im Vergleich zum ursprünglichen Modell genauer dargestellt wird.

    (3 BE)

  • Weisen Sie nach, dass die Steigung von \(G_f\) in jedem Punkt des Graphen negativ ist. Berechnen Sie die Größe des Winkels, unter dem \(G_f\) die \(x\)-Achse schneidet.

    (4 BE)

  • Skizzieren Sie in der Abbildung den darin fehlenden Teil von \(G_f\) unter Berücksichtigung der bisherigen Ergebnisse.

    (3 BE)

  • Ermitteln Sie die Gleichung der Tangente an \(G_{g}\) im Schnittpunkt von \(G_{g}\) mit der \(x\)-Achse.

    (4 BE)

  • Geben Sie die Nullstelle von \(H_{0}\) an und bestimmen Sie näherungsweise mithilfe von Abbildung 2 die Funktionswerte \(H_{0}(-0{,}5)\) sowie \(H_{0}(3)\). Skizzieren Sie in Abbildung 2 den Graphen von \(H_{0}\) im Bereich \(-0{,}5 \leq x \leq 3\).

    (6 BE)

  • Gegeben ist eine in \(\mathbb R\) definierte ganzrationale Funktion \(f\) dritten Grades, deren Graph \(G_{f}\) an der Stelle \(x = 1\) einen Hochpunkt und an der Stelle \(x = 4\) einen Tiefpunkt besitzt.

    Begründen Sie, dass der Graph der Ableitungsfunktion \(f'\) von \(f\) eine Parabel ist, welche die \(x\)-Achse in den Punkten \((1|0)\) und \((4|0)\) schneidet und nach oben geöffnet ist.

    (3 BE)

  • Skizzieren Sie im Bereich \(-1 \leq x \leq 4\) den Graphen einer in \(\mathbb R\) definierten Funktion \(f\) mit den folgenden Eigenschaften:

    ● \(f\) ist nur an der Stelle \(x = 3\) nicht differenzierbar.

    ● \(f(0)\) = 2 und für die Ableitung \(f'\) von \(f\) gilt: \(f'(0) = -1\).

    ● Der Graph von \(f\) ist im Bereich \(-1 < x < 3\) linksgekrümmt.

    (3 BE)

  • Abbildung 2 zeigt den Graphen \(G_{k}\) einer in \(\mathbb R\) definierten Funktion \(k\). Skizzieren Sie in Abbildung 2 den Graphen der zugehörigen Ableitungsfunktion \(k'\). Berücksichtigen Sie dabei insbesondere einen Näherungswert für die Steigung des Graphen \(G_{k}\) an dessen Wendepunkt \((0|-3)\) sowie die Nullstelle von \(k'\).

    Abbildung 2 zu Teilaufgabe 4 - Analysis 2 - Prüfungsteil A - Mathematik Abitur Bayern 2016

    Abb. 2

    (4 BE)

  • Berechnen Sie die Steigung der Tangente \(g\) an \(G_{f}\) im Punkt \(P(2|f(2))\) auf eine Dezimale genau. Zeichnen Sie den Punkt \(P\) und die Gerade \(g\) in ein Koordinatensystem ein (Platzbedarf im Hinblick auf das Folgende: \(-4 \leq x \leq 4\), \(-1 \leq y \leq 9\)).

    (3 BE)