Mathematik Abitur Bayern 2011 G8

  • Betrachtet wird die Aussage \(\displaystyle \int_{0}^{\pi} \sin(2x)\,dx = 0\).

    Machen Sie ohne Rechnung anhand einer sorgfältigen Skizze plausibel, dass die Aussage wahr ist.

    (3 BE)

  • Skizzieren Sie den Graphen der in \(\mathbb R\) definierten Funktion \(f : x \mapsto 4 - x^2\). Berechnen Sie den Inhalt des Flächenstücks, das der Graph von \(f\) mit der \(x\)-Achse einschließt.

    (5 BE)

  • Bestimmen Sie rechnerisch die Koordinaten desjenigen Graphenpunkts \(Q_E(x_E|y_E)\), der von \(P\) den kleinsten Abstand hat. Tragen Sie \(Q_E\) in Abbildung 1 ein.

    (zur Kontrolle: \(x_E = 1\))

    (7 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f : x \mapsto 6 \cdot e^{-0{,}5x} + x\). Der Graph von \(f\) wird mit \(G_f\) bezeichnet.

     

    Untersuchen Sie das Monotonie- und das Krümmungsverhalten von \(G_f\). Bestimmen Sie Lage und Art des Extrempunkts \(E(x_E|y_E)\) von \(G_f\).

    (zur Kontrolle: \(x_E = 2 \cdot \ln 3; \enspace f''(x) = 1{,}5 \cdot e^{-0{,}5x}\))

    (10 BE)

  • Geben Sie den Term einer gebrochen-rationalen Funktion \(f\) mit Definitionsmenge \(\mathbb R \backslash \{-1\}\) an, deren Graph die Gerade mit der Gleichung \(y = 2\) als Asymptote besitzt und in \(x = -1\) eine Polstelle ohne Vorzeichenwechsel hat.

    (3 BE)

  • Weisen Sie nach, dass die Verbindungsstrecke \([PQ_E]\) und die Tangente an \(G_f\) im Punkt \(Q_E\) senkrecht zueinander sind.

    (5 BE)

  • Abbildung 2 zeigt den Graphen \(G_g\) einer in \(\mathbb R \backslash \{1\}\) definierten gebrochen-rationalen Funktion \(g\) mit folgenden Eigenschaften:

    • Die Funktion \(g\) hat in \(x = 1\) eine Polstelle ohne Vorzeichenwechsel;

    • \(G_g\) verläuft stets oberhalb seiner schrägen Asymptote, die durch die Gleichung \(y = \frac{1}{2}x - 1\) gegeben ist;

    • die einzige Nullstelle von \(g\) ist \(x = -1\).

    Abbildung 2, Teilaufgabe 2a, Graph der gebrochen-rationalen Funktion g Abb. 2

    Ermitteln Sie mithilfe von Abbildung 2 näherungsweise den Wert der Ableitung \(g'\) von \(g\) an der Stelle \(x = -1\); veranschaulichen Sie Ihr Vorgehen durch geeignete Eintragungen in der Abbildung.

    Aus der Gleichung der schrägen Asymptote ergibt sich unmittelbar das Verhalten der Ableitung \(g'\) für \(x \to +\infty\) und \(x \to -\infty\). Geben Sie dieses Verhalten an und skizzieren Sie den Graphen von \(g'\) in Abbildung 2.

    (6 BE)

  • Berechnen Sie den Inhalt des Flächenstücks, das von \(G_f\), der \(x\)-Achse und der Strecke \([PQ_E]\) begrenzt wird.

    (6 BE)

  • Aus den Ergebnissen der Aufgabe 3a ergibt sich, dass jede Funktion der Schar genau eine Nullstelle besitzt. Bestimmen Sie für diese Nullstelle in Abhängigkeit von \(a\) einen Näherungswert \(x_1\), indem Sie den ersten Schritt des Newton-Verfahrens mit dem Startwert \(x_0 = 0\) durchführen.

    (3 BE)

  • Bestimmen Sie den Inhalt des Flächenstücks, das \(G_h\), die Koordinatenachsen und die Gerade mit der Gleichung \(x = 5\) einschließen. Interpretieren Sie das Ergebnis im Sachzusammenhang.

    (6 BE)

  • Weisen Sie mithilfe einer Stammfunktion die Gültigkeit der Aussage durch Rechnung nach.

    (3 BE)

  • Bestimmen Sie den Term der Ableitung von \(f\).

    (2 BE)

  • Gegeben ist die Schar der Funktionen \(f_a : x \mapsto 6 \cdot e^{-0{,}5x} - a \cdot x\) mit \(a \in \mathbb R^+\) und Definitionsmenge \(\mathbb R\).

     

    Weisen Sie nach, dass die Graphen aller Funktionen der Schar die \(y\)-Achse im selben Punkt schneiden und in \(\mathbb R\) streng monoton fallend sind. Zeigen Sie, dass \(\lim \limits_{x \, \to \, +\infty} f_a(x) = -\infty\) gilt.

    (5 BE)

  • Betrachtet wird nun die Funktion \(h\) mit \(h(x) = \ln(g(x))\). Geben Sie mithilfe des Verlaufs von \(G_g\) die maximale Definitionsmenge \(D_h\) von \(h\), das Verhalten von \(h\) an den Grenzen von \(D_h\) sowie einen Näherungswert für die Nullstelle von \(h\) an.

    (5 BE)

  • Gegeben ist die Funktion \(f \colon x \mapsto \sqrt{x + 3}\) mit Definitionsmenge \(D_f\). Abbildung 1 zeigt den Graphen \(G_f\) von \(f\), einen beliebigen Punkt \(Q(x|f(x))\) auf \(G_f\) sowie den Punkt \(P(1{,}5|0)\) auf der \(x\)-Achse.

    Abbildung 1 Teilaufgabe 1aAbb. 1

    Begründen Sie, dass \(D_f = [-3;+\infty[\) die maximale Definitionsmenge von \(f\) ist. Wie geht \(G_f\) aus dem Graphen der in \(\mathbb R_0^+\) definierten Funktion \(w : x \mapsto \sqrt{x\;}\;\) hervor?

    (2 BE)

  • Geben Sie die maximale Definitionsmenge der Funktion \(f : x \mapsto 3\sqrt{x}\;\) an und bestimmen Sie den Term derjenigen Stammfunktion von \(f\), deren Graph den Punkt \((1|4)\) enthält.

    (4 BE)

  • Gegeben ist die Funktion \(\displaystyle f : x \mapsto \frac{2x + 3}{4x + 5}\) mit maximaler Definitionsmenge \(D\). Geben Sie \(D\) an und ermitteln Sie einen möglichst einfachen Funktionsterm für die Ableitung \(f'\) von \(f\).

    (4 BE)

  • Zeigen Sie, dass für die Entfernung \(d(x)\) des Punktes \(Q(x|f(x))\) vom Punkt \(P(1{,}5|0)\) gilt: \(d(x) = \sqrt{x^2 - 2x + 5{,}25}\).

    (4 BE)

  • Die Anzahl der auf der Erde lebenden Menschen wuchs von 6,1 Milliarden zu Beginn des Jahres 2000 auf 6,9 Milliarden zu Beginn des Jahres 2010.Dieses Wachstum lässt sich näherungsweise durch eine Exponentialfunktion mit einem Term der Form \(N(x) = N_0 \cdot e^{k \cdot (x - 2000)}\) beschreiben, wobei \(N(x)\) die Anzahl der Menschen zu Beginn des Jahres \(x\) ist.

    Bestimmen Sie \(N_0\) und \(k\).

    (5 BE)

  • Ermitteln Sie das Symmetrieverhalten des Graphen von \(f\) und geben Sie den Grenzwert von \(f\) für \(x \to +\infty\) an.

    (3 BE)

Seite 2 von 3