Richtungsvektor

  • Der Richtungsvektor von \(g_2\) beschreibt im Modell die konstante Geschwindigkeit des Flugzeugs \(F_2\) in \(\frac{\sf{km}}{\sf{min}}\). Geben Sie die physikalische Bedeutung des Parameters \(\mu\) an.

    (2 BE)

  • Eine Radarstation, deren Position im Modell durch den Punkt \(R\,(20|30|0)\) veranschaulicht wird, erfasst alle Objekte im Luftraum bis zu einer Entfernung von 50 km. Berechnen Sie die Länge der Flugstrecke von \(F_2\) in dem vom Radar erfassten Bereich.

    (6 BE)

  • Das Lot zur Ebene \(E\) im Punkt \(R\) wird als Einfallslot bezeichnet.

    Die beiden Geraden, entlang derer der einfallende und der reflektierte Lichtstrahl im Modell verlaufen, liegen in einer Ebene \(F\). Ermitteln Sie eine Gleichung von \(F\) in Normalenform. Weisen Sie nach, dass das Einfallslot ebenfalls in der Ebene \(F\) liegt.

    (mögliches Teilergebnis: \(F\,\colon\, x_1 - x_2 = 0\)) 

    (5 BE)

  • Die Gerade \(g\) verläuft durch die Punkte \(A\,(0|1|2)\) und \(B\,(2|5|6)\).

    Zeigen Sie, dass die Punkte \(A\) und \(B\) den Abstand 6 haben.

    Die Punkte \(C\) und \(D\) liegen auf \(g\) und haben von \(A\) jeweils den Abstand 12. Bestimmen Sie die Koordinaten von \(C\) und \(D\).

    (3 BE)

  • Bestimmen Sie unter Verwendung eines geeignet gewählten kartesischen Koordinatensystems eine Gleichung für die Gerade, die durch die Punkte \(B\) und \(S\) verläuft.

    Zeichnen Sie das gewählte Koordinatensystem in die Abbildung ein.

    (3 BE)

  • In einem kartesischen Koordinatensystem sind die Ebene \(E \colon x_{1} + x_{3} = 2\), der Punkt \(A\left( 0|\sqrt{2}|2 \right)\) und die Gerade \(\displaystyle g \colon \overrightarrow{X} = \overrightarrow{A} + \lambda \cdot \begin{pmatrix} -1 \\ \sqrt{2} \\ 1 \end{pmatrix}\), \(\lambda \in \mathbb R\), gegeben.

    Beschreiben Sie, welche besondere Lage die Ebene \(E\) im Koordinatensystem hat. Weisen Sie nach, dass die Ebene \(E\) die Gerade \(g\) enthält. Geben Sie die Koordinaten der Schnittpunkte von \(E\) mit der \(x_{1}\)-Achse und mit der \(x_{3}\)-Achse an und veranschaulichen Sie die Lage der Ebene \(E\) sowie den Verlauf der Geraden \(g\) in einem kartesischen Koordinatensystem (vgl. Abbildung).

    Abbildung zu Teilaufgabe a Geometrie 1 Prüfungsteil B Mathematik Abitur Bayern 2015

     

    (6 BE)

  • Die \(x_{1}x_{2}\)-Ebene beschreibt modellhaft eine horizontale Fläche, auf der eine Achterbahn errichtet wurde. Ein gerader Abschnitt der Bahn beginnt im Modell im Punkt \(A\) und verläuft entlang der Geraden \(g\). Der Vektor \(\displaystyle \begin{pmatrix} -1 \\ \sqrt{2} \\ 1 \end{pmatrix}\) beschreibt die Fahrtrichtung auf diesem Abschnitt.

    Berechnen Sie im Modell die Größe des Winkels, unter dem dieser Abschnitt der Achterbahn gegenüber der Horizontalen ansteigt.

    (3 BE)

  • An den betrachteten geraden Abschnitt der Achterbahn schließt sich - in Fahrtrichtung gesehen - eine Rechtskurve an, die im Modell durch einen Viertelkreis beschrieben wird, der in der Ebene \(E\) verläuft und den Mittelpunkt \(M \left( 0|3\sqrt{2}|2 \right)\) hat.

    Das Lot von \(M\) auf \(g\) schneidet \(g\) im Punkt \(B\). Im Modell stellt \(B\) den Punkt der Achterbahn dar, in dem der gerade Abschnitt endet und die Kurve beginnt. Bestimmen Sie die Koordinaten von \(B\) und berechnen Sie den Kurvenradius im Modell.

    (Teilergebnis: \(B\left( -1|2\sqrt{2}|3 \right)\)) 

    (5 BE)

  • Das Ende der Rechtskurve wird im Koordinatensystem durch den Punkt \(C\) beschrieben. Begründen Sie, dass für den Ortsvektor des Punkts \(C\) gilt: \(\overrightarrow{C} = \overrightarrow{M} + \overrightarrow{v}\).

    (2 BE)

  • Sonnenlicht, das an einem Sommertag zu einem bestimmten Zeitpunkt \(t_{0}\) auf die Sonnenuhr einfällt, wird im Modell durch parallele Geraden mit dem Richtungsvektor \(\overrightarrow{u} = \begin{pmatrix} 6 \\ 6 \\ -13 \end{pmatrix}\) dargestellt.

    Weisen Sie nach, dass der Schatten der im Modell durch den Punkt \(S\) dargestellten Spitze des Polstabs außerhalb der rechteckigen Grundplatte liegt.

    (6 BE)

  • Um 6 Uhr verläuft der Schatten des Polstabs im Modell durch den Mittelpunkt der Kante \([BC]\), um 12 Uhr durch den Mittelpunkt der Kante \([AB]\) und um 18 Uhr durch den Mittelpunkt der Kante \([AD]\). Begründen Sie, dass der betrachtete Zeitpunkt \(t_{0}\) vor 12 Uhr liegt.

    (2 BE)

  • Die Gerade \(g\) verläuft durch die Punkte \(A\,(0|1|2)\) und \(B\,(2|5|6)\).

    Zeigen Sie, dass die Punkte \(A\) und \(B\) den Abstand 6 haben.

    Die Punkte \(C\) und \(D\) liegen auf \(g\) und haben von \(A\) jeweils den Abstand 12. Bestimmen Sie die Koordinaten von \(C\) und \(D\).

    (3 BE)

  • Gegeben sind die Punkte \(A(2|1|-4)\), \(B(6|1|-12)\) und \(C(0|1|0)\).

    Weisen Sie nach, dass der Punkt \(C\) auf der Geraden \(AB\), nicht aber auf der Strecke \([AB]\) liegt.

    (3 BE)

  • In einem kartesischen Koordinatensystem sind die Punkte \(A(0|0|1)\), \(B(2|6|1)\), \(C(-4|8|5)\) und \(D(-6|2|5)\) gegeben. Sie liegen in einer Ebene \(E\) und bilden ein Viereck \(ABCD\), dessen Diagonalen sich im Punkt \(M\) schneiden.

    Begründen Sie, dass die Gerade \(AB\) parallel zur \(x_{1}x_{2}\)-Ebene verläuft.

    (1 BE)

  • Um die Sonneneinstrahlung im Laufe des Tages möglichst effektiv zur Energiegewinnung nutzen zu können, lässt sich das Metallrohr mit dem Solarmodul um die Längsachse des Rohrs drehen. Die Größe des Neigungswinkels \(\varphi\) gegenüber der Horizontalen bleibt dabei unverändert. Betrachtet wird der Eckpunkt des Solarmoduls, der im Modell durch den Punkt \(A\) dargestellt wird. Berechnen Sie den Radius des Kreises, auf dem sich dieser Eckpunkt des Solarmoduls bei der Drehung des Metallrohrs bewegt, auf Zentimeter genau.

    (4 BE)

  • Bestimmen Sie eine Gleichung der Symmetrieachse \(g\) des Dreiecks \(CDS\).

    (2 BE)

  • Die Gerade \(g\) berührt die Kugel im Punkt \(B(-3|8|2)\). Ermitteln Sie eine mögliche Gleichung von \(g\).

    (2 BE)

  • Abbildung Teilaufgabe d Geometrie 2 Prüfungsteil B Mathematik Abitur Bayern 2021

    Ein auf einer Stange montierter Brunnen besteht aus einer Marmorkugel, die in einer Bronzeschale liegt. Die Marmorkugel berührt die vier Innenwände der Bronzeschale an jeweils genau einer Stelle. Die Bronzeschale wird im Modell durch die Seitenflächen der Pyramide \(ABCDS\) beschrieben, die Marmorkugel durch eine Kugel mit Mittelpunkt \(M(0|0|4)\) und Radius \(r\). Die \(x_{1}x_{2}\)-Ebene des Koordinatensystems stellt im Modell den horizontal verlaufenden Erdboden dar; eine Längeneinheit entspricht einem Dezimeter in der Realität.

    Ermitteln Sie den Durchmesser der Marmorkugel auf Zentimeter genau.

    (zur Kontrolle: \(r = \sqrt{6}\))

    (4 BE)

  • Begründen Sie ohne Rechnung, dass \(g\) in der \(x_1x_2\)-Ebene liegt.

    (1 BE)

  • Gegeben ist die Gerade \(g \colon \overrightarrow{X} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}\) mit \(\lambda \in \mathbb R\).

    Zeigen Sie, dass \(g\) in der Ebene mit der Gleichung \(x_1 + x_2 + x_3 = 2\) liegt.

    (2 BE) 

Seite 2 von 3