Skalarprodukt

  • Geben Sie die Koordinaten eines weiteren Punkts \(D\) der \(x_{2}\)-Achse an, so dass das Dreieck \(ABD\) bei \(D\) rechtwinklig ist. Begründen Sie Ihre Antwort.

    (2 BE)

  • In einem kartesischen Koordinatensystem sind die Punkte \(A(0|0|1)\), \(B(2|6|1)\), \(C(-4|8|5)\) und \(D(-6|2|5)\) gegeben. Sie liegen in einer Ebene \(E\) und bilden ein Viereck \(ABCD\), dessen Diagonalen sich im Punkt \(M\) schneiden.

    Begründen Sie, dass die Gerade \(AB\) parallel zur \(x_{1}x_{2}\)-Ebene verläuft.

    (1 BE)

  • Weisen Sie nach, dass das Viereck \(ABCD\) ein Rechteck ist. Bestimmen Sie die Koordinaten von \(M\).

    (4 BE)

  • Ermitteln Sie eine Gleichung der Ebene \(E\) in Normalenform.

    (mögliches Ergebnis: \(E \colon 3x_{1} - x_{2} + 5x_{3} - 5 = 0\))

    (3 BE)

  • Ein Solarmodul wird an einem Metallrohr befestigt, das auf einer horizontalen Fläche senkrecht steht. Das Solarmodul wird modellhaft durch das Rechteck \(ABCD\) dargestellt. Das Metallrohr lässt sich durch eine Strecke, der Befestigungspunkt am Solarmodul durch den Punkt \(M\) beschreiben (vgl. Abbildung). Die horizontale Fläche liegt im Modell in der \(x_{1}x_{2}\)-Ebene des Koordinatensystems; eine Längeneinheit entspricht 0,8 m in der Realität.

    Abbildung Teilaufgabe d Geometrie 1 Mathematik Abitur Bayern 2017 B

     

    Um einen möglichst großen Energieertrag zu erzielen, sollte die Größe des Neigungswinkels \(\varphi\) des Solarmoduls gegenüber der Horizontalen zwischen 30° und 36° liegen. Prüfen Sie, ob diese Bedingung erfüllt ist.

    (3 BE)

  • Um die Sonneneinstrahlung im Laufe des Tages möglichst effektiv zur Energiegewinnung nutzen zu können, lässt sich das Metallrohr mit dem Solarmodul um die Längsachse des Rohrs drehen. Die Größe des Neigungswinkels \(\varphi\) gegenüber der Horizontalen bleibt dabei unverändert. Betrachtet wird der Eckpunkt des Solarmoduls, der im Modell durch den Punkt \(A\) dargestellt wird. Berechnen Sie den Radius des Kreises, auf dem sich dieser Eckpunkt des Solarmoduls bei der Drehung des Metallrohrs bewegt, auf Zentimeter genau.

    (4 BE)

  • Ermitteln Sie eine Gleichung der Ebene \(F\), in der das Dreieck \(DAS\) liegt, in Normalenform.

    (mögliches Ergebnis: \(F \colon 12x_{1} - 5x_{3} = 0\))

    (3 BE)

  • Ein Teil der Zeltwand, die im Modell durch das Dreieck \(CDS\) dargestellt wird, kann mithilfe zweier vertikal stehender Stangen der Länge 1,80 m zu einem horizontalen Vordach aufgespannt werden (vgl. Abbildung 2). Die dadurch entstehende 1,40 m breite Öffnung in der Zeltwand wird im Modell durch ein Rechteck dargestellt, das symmetrisch zu \(g\) liegt Dabei liegt eine Seite dieses Rechtecks auf der Strecke \([CD]\). Berechnen Sie den Flächeninhalt des Vordachs.

    Abbildung 2 Teilaufgabe f Geometrie 2 Mathematik Abitur Bayern 2017 B

     

    (5 BE)

  • Die Punkte \(A(1|1|1)\), \(B(0|2|2)\) und \(C(-1|2|0)\) liegen in der Ebene \(E\).

    Bestimmen Sie eine Gleichung von \(E\) in Normalenform.

    (4 BE)

  • Auf einem Spielplatz wird ein dreieckiges Sonnensegel errichtet, um einen Sandkasten zu beschatten. Hierzu werden an drei Ecken des Sandkastens Metallstangen im Boden befestigt, an deren Enden das Sonnensegel fixiert wird.

    In einem kartesischen Koordinatensystem stellt die \(x_{1}x_{2}\)-Ebene den horizontalen Boden dar. Der Sandkasten wird durch das Rechteck mit den Eckpunkten \(K_{1}(0|4|0)\), \(K_{2}(0|0|0)\), \(K_{3}(3|0|0)\) und \(K_{4}(3|4|0)\) beschrieben. Das Sonnensegel wird durch das ebene Dreieck mit den Eckpunkten \(S_{1}(0|6|2{,}5)\), \(S_{2}(0|0|3)\) und \(S_{3}(6|0|2{,}5)\) dargestellt (vgl. Abbildung 1). Eine Längeneinheit im Koordinatensystem entspricht einem Meter in der Realität.

    Abbildung 1 Geometrie 1 Mathematik Abitur Bayern 2018 BAbb. 1

    Die Punkte \(S_{1}\), \(S_{2}\) und \(S_{3}\) legen die Ebene \(E\) fest.

    Ermitteln Sie eine Gleichung der Ebene \(E\) in Normalenform.

    (zur Kontrolle: \(E \colon x_{1} + x_{2} + 12x_{3} - 36 = 0\))

    (4 BE)

  • Die Punkte \(A\), \(B\), \(E\) und \(F\) liegen in der Ebene \(L\). Ermitteln Sie eine Gleichung von \(L\) in Normalenform.

    (zur Kontrolle: \(L \colon 2x_{1} + 2x_{2} + 3x_{3} - 12 = 0\))

    (4 BE)

  • Ermitteln Sie eine Gleichung der Ebene \(T\) in Normalenform.

    (zur Kontrolle: \(T \colon 5x_{1} + 4x_{2} + 5x_{3} - 30 = 0\))

    (3 BE)

  • Spiegelt man die Ebene \(T\) an \(U\), so erhält man die von \(T\) verschiedene Ebene \(T'\). Zeigen Sie, dass für einen bestimmten Wert von \(a\) die Gerade \(g_{a}\) in der Ebene \(T\) liegt, und begründen Sie, dass diese Gerade \(g_{a}\) die Schnittgerade von \(T\) und \(T'\) ist.

    (4 BE)

  • Ermitteln Sie die Koordinaten des Eckpunkts \(S\) der Raute \(PQRS\). Zeigen Sie, dass \(PQRS\) kein Quadrat ist.

    (2 BE)

  • Berechnen Sie die Größe des Neigungswinkels der Dachfläche gegenüber der Horizontalen.

    (3 BE)

  • Der Punkt \(T(7|10|0)\) liegt auf der Kante \([A_{3}A_{4}]\). Untersuchen Sie rechnerisch, ob es Punkte auf der Kante \([B_{3}B_{4}]\) gibt, für die gilt: Die Verbindungsstrecken des Punktes zu den Punkten \(B_{1}\) und \(T\) stehen aufeinander senkrecht. Geben Sie gegebenenfalls die Koordinaten dieser Punkte an.

    (6 BE)

  • Der Punkt \(L\), der vertikal über dem Mittelpunkt der Kante \([A_{1}A_{2}]\) liegt, veranschaulicht im Modell die Position einer Flutlichtanlage, die 12 m über der Grundfläche angebracht ist. Die als punktförmig angenommene Lichtquelle beleuchtet - mit Ausnahme des Schattenbereichs in der Nähe der Hallenwände - das gesamte Gelände um die Halle.

    Die Punkte \(L\), \(B_{2}\) und \(B_{3}\) legen eine Ebene \(F\) fest. Ermitteln Sie eine Gleichung von \(F\) in Normalenform.

    (zur Kontrolle: \(F \colon 3x_{1} + x_{2} + 5x_{3} - 90 = 0\))

    (5 BE)

  • Gegeben sind in einem kartesischen Koordinatensystem die Ebene \(E \colon 4x_{1} - 8x_{2} + x_{3} + 50 = 0\) und die Gerade \(g \colon \overrightarrow{X} = \begin{pmatrix} 3 \\ 12 \\ -2 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 5 \\ 11 \\ -4 \end{pmatrix}, \; \lambda \in \mathbb R\,.\)

    Erläutern Sie, warum die folgende Rechnung ein Nachweis dafür ist, dass \(g\) und \(E\) genau einen gemeinsamen Punkt haben:

    \[\begin{pmatrix} 4 \\ -8 \\ 1 \end{pmatrix} \circ \begin{pmatrix} 5 \\ 11 \\ -4 \end{pmatrix} = -72 \neq 0\]

    (1 BE)

  • Berechnen Sie die Größe des Schnittwinkels von \(g\) und \(E\) und zeigen Sie, dass \(S(0{,}5|6{,}5|0)\) der Schnittpunkt von \(g\) und \(E\) ist.

    (5 BE)

  • Gegeben ist die Gerade \(g \colon \overrightarrow{X} = \begin{pmatrix} 1 \\ 7 \\ 2 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix}\), \(\lambda \in \mathbb R\), sowie eine weitere Gerade \(h\), welche parallel zu \(g\) ist und durch den Punkt \(A(2|0|0)\) verläuft. Der Punkt \(B\) liegt auf \(g\) so, dass die Geraden \(AB\) und \(h\) senkrecht zueinander sind.

    Bestimmen Sie die Koordinaten von \(B\).

    (zur Kontrolle: \(B(-2|3|2)\))

    (4 BE)