Skalarprodukt

  • In einem kartesischen Koordinatensystem sind die Punkte \(A\,(10|2|0)\), \(B\,(10|8|0)\), \(C\,(10|4|3)\), \(R\,(2|2|0)\), \(S\,(2|8|0)\) und \(T\,(2|4|3)\) gegeben. Der Körper \(ABCRST\) ist ein gerades dreiseitiges Prisma mit der Grungfläche \(ABC\), der Deckfläche \(RST\) und rechteckigen Seitenflächen.

    Zeichen Sie das Prisma in ein kartesisches Koordinatensystem (vgl. Abbildung) ein. Welche besondere Lage im Koordinatensystem hat die Grundfläche \(ABC\,\)? Berechnen Sie das Volumen des Prismas.

    Abbildung: Koordinatensystem

    (6 BE)

  • Durch das Fenster einfallendes Sonnenlicht wird im Zimmer durch parallele Geraden mit dem Richtungsvektor \(\overrightarrow v = \begin{pmatrix} -2 \\ -8 \\ -1 \end{pmatrix}\) repräsentiert. Eine dieser Geraden verläuft durch den Punkt \(G\) und schneidet die Seitenwand \(OPQR\) im Punkt \(S\). Berechnen Sie die Koordinaten von \(S\) sowie die Größe des Winkels, den diese Gerade mit der Seitenwand \(OPQR\) einschließt.

    (6 BE)

  • Abbildung 2 zeigt ein quaderförmiges Möbelstück, das 40 cm hoch ist. Es steht mit seiner Rückseite flächenbündig an der Wand unter dem Fenster. Seine vordere Oberkante liegt im Modell auf der Geraden \(k \colon \enspace \overrightarrow X = \begin{pmatrix} 0 \\ 5{,}5 \\ 0{,}4 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}\), \(\lambda \in \mathbb R\,\).

    Abbildung 2: quaderförmiges MöbelstückAbb. 2

    Ermitteln Sie mithilfe von Abbildung 2 die Breite \(b\) des Möbelstücks möglichst genau.

    Bestimmen Sie mithilfe der Gleichung der Geraden \(k\) die Tiefe \(t\) des Möbelstücks und erläutern Sie Ihr Vorgehen.

    (4 BE)

  • Ein Hubschrauber überfliegt das Grundstück entlang einer Linie, die im Modell durch die Gerade

    \[g\colon \enspace \overrightarrow X = \begin {pmatrix} -20 \\ 40 \\ 40 \end {pmatrix} + \lambda \cdot \begin {pmatrix} 4 \\ 5 \\ -3 \end {pmatrix}\,, \enspace \lambda \in \mathbb R \;,\]

    beschrieben wird.

     

    Weisen Sie nach, dass der Hubschrauber mit einem konstanten Abstand von 20 m zum Hang fliegt.

    (3 BE)

  • Berechnen Sie die Größe des spitzen Winkels, den die Seitenkanten \([CA]\) und \([CB]\) einschließen.

    (3 BE)

  • Ermitteln Sie eine Gleichung der Ebene \(E\), in der die Seitenfläche \(BSTC\) liegt, in Normalenform.

    (mögliches Ergebnis: \(E \colon 3x_2 + 4x_3 - 24 = 0\))

    (4 BE)

  • Abbildung 1 zeigt modellhaft ein Dachzimmer in der Form eines geraden Prismas. Der Boden und zwei Seitenwände liegen in den Koordinatenebenen. Das Rechteck \(ABCD\) liegt in einer Ebene \(E\) und stellt den geneigten Teil der Deckenfläche dar.

    Abbildung 1: Modell eines DachzimmersAbb. 1

    Bestimmen Sie eine Gleichung der Ebene \(E\) in Normalenform.

    (mögliches Ergebnis: \(E \colon x_2 + 2x_3 - 8 = 0\))

    (4 BE)

  • In einem kartesischen Koordinatensystem sind die Punkte \(A\,(0|60|0), B\,(-80|60|60)\) und \(C\,(-80|0|60)\) gegeben.

    Ermitteln Sie eine Gleichung der Ebene \(E\), die durch die Punkte \(A, B\) und \(C\) bestimmt wird, in Normalenform. Welche besondere Lage im Koordinatensystem hat \(E\,\)? Berechnen Sie die Größe des Winkels \(\varphi\), unter dem \(E\) die \(x_1x_2\)-Ebene schneidet.

    (mögliche Teilergebnisse: \(E\colon \enspace 3x_1 + 4x_3 = 0; \enspace \varphi \approx 36{,}9^\circ\))

    (8 BE)

  • Ermitteln Sie eine Gleichung der Ebene \(E\), in der die Seitenfläche \(ABCD\) liegt in Normalenform.

    (mögliches Ergebnis: \(E\;\colon \, 3x_1 + 4x_3 - 84 = 0\))

    (3 BE)

  • Berechnen Sie die Größe des Winkels, unter dem die Seitenfläche \(ABCD\) gegen die \(x_1x_2\)-Ebene geneigt ist.

    (3 BE)

  • Auf der Deckfläche des Grundkörpers liegt eine Stahlkugel mit einem Radius von 0,8 m. Im Modell berührt die Kugel die Deckfläche des Spats im Punkt \(K\). Beschreiben Sie, wie man im Modell rechnerisch überprüfen könnte, ob die Stahlkugel die Stange berührt, wenn die Koordinaten von \(K\) bekannt wären.

    (4 BE)

  • Die Abbildung zeigt modellhaft einen Austellungspavillon, der die Form einer geraden vierseitigen Pyramide mit quadratischer Grundfläche hat und auf einer horizontalen Fläche steht. Das Dreieck \(BCS\) beschreibt im Modell die südliche Außenwand des Pavillons. Im Koordinatensystem entspricht eine Längeneinheit 1 m, d.h. die Grundfläche des Pavillons hat eine Seitenlänge von 12 m.

    Abbildung: Gerade vierseitige Pyramide ABCDS mit quadratischer Grundfläche ABCD

    Geben Sie die Koordinaten des Punkts \(B\) an und bestimmen Sie das Volumen des Pavillons.

    (3 BE)

  • Die südliche Außenwand des Pavillons liegt im Modell in einer Ebene \(E\). Bestimmen Sie eine Gleichung von \(E\) in Normalenform.

    (mögliches Ergebnis: \(E\;\colon\, 4x_2 + 3x_3 - 48 = 0\)) 

    (4 BE)

  • Die von Solarmodulen abgegebene elektrische Leistung hängt unter anderem von der Größe ihres Neigungswinkels gegen die Horizontale ab. Die Tabelle gibt den Anteil der abgegebenen Leistung an der maximal möglichen Leistung in Abhängigkeit von der Größe des Neigungswinkels an. Schätzen Sie diesen Anteil für die Solarmodule des Pavillons - nach Berechnung des Neigungswinkels - unter Verwendung der Tabelle ab.

    Tabelle: Neigungswinkel / Anteil an der maximalen Leistung

    (4 BE)

  • Zwei Punkte \(U\) und \(V\) der Geraden \(h\) bilden zusammen mit \(P\) und \(Q\) das Rechteck \(PUQV\). Beschreiben Sie einen Weg zur Ermittlung der Koordinaten von \(U\) und \(V\).

    (4 BE)

  • Weisen Sie nach, dass der Koordinatenursprung \(O\) mit den Punkten \(A\), \(B\) und \(C\) ein Rechteck \(OABC\) festlegt. Bestätigen Sie, dass dieses Rechteck den Flächeninhalt 6000 besitzt, und zeichnen Sie es in ein Koordinatensystem (vgl. Abbildung) ein.

    Abbildung Teilaufgabe b: Koordinatensystem, Lage der Koordinatenachsen

    (6 BE)

Seite 5 von 5