Normalenvektor

  • Gegeben sind die Ebene \(H\;\colon\, 2x_1 + x_2 - x_3 = 4\) und der Punkt \(Q\,(-3|0|2)\).

    Spiegelt man den Punkt \(Q\) an der Ebene \(H\), so erhält man den Punkt \(Q'\). Ermitteln Sie die Koordinaten von \(Q'\).

    (2 BE)

  • Gegeben ist die Ebene \(E\;\colon\,2x_1 - x_2 + 2x_3 = 4\).

    Die Ebene \(E\) schneidet die \(x_1x_2\)-Ebene in der Geraden \(g\). Bestimmen Sie eine Gleichung von \(g\)

    (3 BE)

  • Berechnen Sie die Größe des Steigungswinkels der Flugbahn von \(F_1\) gegen die Horizontale.

    (4 BE)

  • Eine Radarstation, deren Position im Modell durch den Punkt \(R\,(20|30|0)\) veranschaulicht wird, erfasst alle Objekte im Luftraum bis zu einer Entfernung von 50 km. Berechnen Sie die Länge der Flugstrecke von \(F_2\) in dem vom Radar erfassten Bereich.

    (6 BE)

  • Die Ebene \(M\,\colon\; x_1 - x_2 + x_3 = 3\) schneidet den Würfel in einem regulären Sechseck.

    Begründen Sie, dass \(M\) parallel zu \(L\) ist. Geben Sie die Schnittpunkte von \(M\) mit der \(x_1\)-Achse sowie mit der \(x_3\)-Achse an und weisen Sie nach, dass \(M\) den Mittelpunkt der Strecke \([BC]\) enthält.

    (4 BE)

  • Die Abbildung zeigt einen Würfel der Kantenlänge 6. Die Koordinaten der Eckpunkte \(A\,(0|0|0)\), \(D\,(0|6|0)\) und \(G\,(6|6|6)\) sind gegeben.

    Abbildung zur Aufgabengruppe Geometrie 2, Würfel der Kantenlänge 6

    Die Punkte \(B\), \(E\) und \(G\) liegen in einer Ebene \(L\). Bestimmen Sie eine Gleichung von \(L\) in Normalenform. Zeichnen Sie die Figur, in der die Ebene \(L\) den Würfel schneidet, in die Abbildung ein.

    (mögliches Ergebnis: \(L\,\colon\; x_1 - x_2 + x_3 = 6\))

    (5 BE)

  • Gegeben ist die Ebene \(E\,\colon \, 3x_2 + 4x_3 = 5\).

    Beschreiben Sie die besondere Lage von \(E\) im Koordinatensystem.

    (1 BE)

  • Der einfallende Lichtstrahl wird in demjenigen Punkt des Spiegels reflektiert, der im Modell durch den Punkt \(R\) dargestellt wird. Der reflektierte Lichtstrahl geht für einen Beobachter scheinbar von einer Lichtquelle aus, deren Position im Modell durch den Punkt \(Q\,(0|0|1)\) beschrieben wird (vgl. Abbildung).

    Abbildung zu Teilaufgabe c

    Zeigen Sie, dass die Punkte \(P\) und \(Q\) bezüglich der Ebene \(E\) symmetrisch sind.

    (3 BE)

  • Das Lot zur Ebene \(E\) im Punkt \(R\) wird als Einfallslot bezeichnet.

    Die beiden Geraden, entlang derer der einfallende und der reflektierte Lichtstrahl im Modell verlaufen, liegen in einer Ebene \(F\). Ermitteln Sie eine Gleichung von \(F\) in Normalenform. Weisen Sie nach, dass das Einfallslot ebenfalls in der Ebene \(F\) liegt.

    (mögliches Teilergebnis: \(F\,\colon\, x_1 - x_2 = 0\)) 

    (5 BE)

  • Die Punkte \(M\) und \(N\) liegen auf der Geraden
    \(\displaystyle \overrightarrow{X} = \begin{pmatrix} 4{,}8 \\ 8 \\ 7{,}4 \end{pmatrix} + \mu \cdot \begin{pmatrix} 6 \\ 0 \\ -1 \end{pmatrix}\), \(\mu \in \mathbb R\),
    die im Modell die Neigung der Dachfläche der Gaube festlegt. Die zur \(x_3\)-Achse parallele Strecke \([NL]\) stellt im Modell den sogenannten Gaubenstiel dar; dessen Länge soll 1,4 m betragen. Um die Koordinaten von \(N\) und \(L\) zu bestimmen, wird die Ebene \(F\) betrachtet, die durch Verschiebung von \(E\) um 1,4 in positive \(x_3\)-Richtung entsteht.

    Begründen Sie, dass \(3x_1 + 4x_3 - 49{,}6 = 0\) eine Gleichung von \(F\) ist.

    (3 BE)

  • In einem kartesischen Koordinatensystem sind die Ebene \(E \colon x_{1} + x_{3} = 2\), der Punkt \(A\left( 0|\sqrt{2}|2 \right)\) und die Gerade \(\displaystyle g \colon \overrightarrow{X} = \overrightarrow{A} + \lambda \cdot \begin{pmatrix} -1 \\ \sqrt{2} \\ 1 \end{pmatrix}\), \(\lambda \in \mathbb R\), gegeben.

    Beschreiben Sie, welche besondere Lage die Ebene \(E\) im Koordinatensystem hat. Weisen Sie nach, dass die Ebene \(E\) die Gerade \(g\) enthält. Geben Sie die Koordinaten der Schnittpunkte von \(E\) mit der \(x_{1}\)-Achse und mit der \(x_{3}\)-Achse an und veranschaulichen Sie die Lage der Ebene \(E\) sowie den Verlauf der Geraden \(g\) in einem kartesischen Koordinatensystem (vgl. Abbildung).

    Abbildung zu Teilaufgabe a Geometrie 1 Prüfungsteil B Mathematik Abitur Bayern 2015

     

    (6 BE)

  • Die \(x_{1}x_{2}\)-Ebene beschreibt modellhaft eine horizontale Fläche, auf der eine Achterbahn errichtet wurde. Ein gerader Abschnitt der Bahn beginnt im Modell im Punkt \(A\) und verläuft entlang der Geraden \(g\). Der Vektor \(\displaystyle \begin{pmatrix} -1 \\ \sqrt{2} \\ 1 \end{pmatrix}\) beschreibt die Fahrtrichtung auf diesem Abschnitt.

    Berechnen Sie im Modell die Größe des Winkels, unter dem dieser Abschnitt der Achterbahn gegenüber der Horizontalen ansteigt.

    (3 BE)

  • An den betrachteten geraden Abschnitt der Achterbahn schließt sich - in Fahrtrichtung gesehen - eine Rechtskurve an, die im Modell durch einen Viertelkreis beschrieben wird, der in der Ebene \(E\) verläuft und den Mittelpunkt \(M \left( 0|3\sqrt{2}|2 \right)\) hat.

    Das Lot von \(M\) auf \(g\) schneidet \(g\) im Punkt \(B\). Im Modell stellt \(B\) den Punkt der Achterbahn dar, in dem der gerade Abschnitt endet und die Kurve beginnt. Bestimmen Sie die Koordinaten von \(B\) und berechnen Sie den Kurvenradius im Modell.

    (Teilergebnis: \(B\left( -1|2\sqrt{2}|3 \right)\)) 

    (5 BE)

  • Abbildung 1 zeigt eine Sonnenuhr mit einer gegenüber der Horizontalen geneigten, rechteckigen Grundplatte, auf der sich ein kreisförmiges Zifferblatt befindet. Auf der Grundplatte ist der Polstab befestigt, dessen Schatten bei Sonneneinstrahlung die Uhrzeit auf dem Zifferblatt anzeigt.

    Abbildung 1 zu Teilaufgabe a Geometrie 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 1

    Eine Sonnenuhr dieser Bauart wird in einem kartesischen Koordinatensystem modellhaft dargestellt (vgl. Abbildung 2). Dabei beschreibt das Rechteck \(ABCD\) mit \(A\,(5|-4|0)\) und \(B\,(5|4|0)\) die Grundplatte der Sonnenuhr. Der Befestigungspunkt des Polstabs auf der Grundplatte wird im Modell durch den Diagonalenschnittpunkt \(M\,(2{,}5|0|2)\) des Rechtecks \(ABCD\) dargestellt. Eine Längeneinheit im Koordinatensystem entspricht 10 cm in der Realität. Die Horizontale wird im Modell durch die \(x_{1}x_{2}\)-Ebene beschrieben.

    Abbildung 2 zu Teilaufgabe a Geometrie 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 2

    Bestimmen Sie die Koordinaten des Punkts \(C\). Ermitteln Sie eine Gleichung der Ebene \(E\), in der das Rechteck \(ABCD\) liegt, in Normalenform.

    (mögliches Teilergebnis: \(E\colon 4x_{1} + 5x_{3} - 20 = 0\))

    (5 BE)

  • Die Grundplatte ist gegenüber der Horizontalen um den Winkel \(\alpha\) geneigt. Damit man mit der Sonnenuhr die Uhrzeit korrekt bestimmen kann, muss für den Breitengrad \(\varphi\) des Aufstellungsorts der Sonnenuhr \(\alpha + \varphi = 90^{\circ}\) gelten. Bestimmen Sie, für welchen Breitengrad \(\varphi\) die Sonnenuhr gebaut wurde.

    (4 BE)

  • Die Punkte \(P\) und \(Q\) liegen symmetrisch zu einer Ebene \(F\). Ermitteln Sie eine Gleichung von \(F\).

    (3 BE)

  • In einem kartesischen Koordinatensystem legen die Punkte \(A(6|3|3)\), \(B(3|6|3)\) und \(C(3|3|6)\) das gleichseitige Dreieck \(ABC\) fest.

    Ermitteln Sie eine Gleichung der Ebenen \(E\), in der das Dreieck \(ABC\) liegt, in Normalenform.

    (mögliches Ergebnis: \(E \colon x_{1} + x_{2} + x_{3} - 12 = 0\))

    (4 BE)

  • Spiegelt man die Punkte \(A\), \(B\) und \(C\) am Symmetriezentrum \(Z(3|3|3)\), so erhält man die Punkte \(A'\), \(B'\) bzw. \(C'\).

    Beschreiben Sie die Lage der Ebene, in der die Punkte \(A\), \(B\) und \(Z\) liegen, im Koordinatensystem. Zeigen Sie, dass die Strecke \([CC']\) senkrecht auf dieser Ebene steht.

    (3 BE)

  • Bestimmen Sie die Größe des Winkels zwischen den Seitenflächen \(ABC\) und \(AC'B\).

    (4 BE)

  • Der Torwart führt den Abstoß aus. Der höchste Punkt der Flugbahn des Balls wird im Modell durch den Punkt \(H(50|70|15)\) beschrieben.

    Ermitteln Sie eine Gleichung der durch die Punkte \(W_{1}\), \(W_{2}\) und \(K_{2}\) festgelegten Ebene \(E\) in Normalenform und weisen Sie nach, dass \(H\) unterhalb von \(E\) liegt.

    (Mögliches Teilergebnis: \(E \colon x_{2} + 5x_{3} - 150 = 0\))

    (7 BE)