Flächeninhaltsberechnung durch Integration

  • Im IV. Quadranten schließt \(G_{f}\) zusammen mit der \(x\)-Achse und den Geraden mit den Gleichungen \(x = 1\) und \(x = 2\) ein Flächenstück ein, dessen Inhalt etwa \(1{,}623\) beträgt. Ermitteln Sie die prozentuale Abweichung von diesem Wert, wenn bei der Berechnung des Flächeninhalts die Funktion \(h\) als Näherung für die Funktion \(f\) verwendet wird.

    (5 BE)

  • Bestimmen Sie rechnerisch den Inhalt der Fläche, die der Graph von f, die \(x\)-Achse und die Gerade \(g\) einschließen.

    (4 BE)

  • Bestimmen Sie rechnerisch den Inhalt der Fläche, die der Graph von f, die \(x\)-Achse und die Gerade \(g\) einschließen.

    (4 BE)

  • Die vordere Seitenfläche des Hinderniselements wird in Teilbereichen der Auf- und Abfahrt als Werbefläche verwendet (vgl. Abbildung 1). Im Modell handelt es sich um zwei Flächenstücke, nämlich um die Fläche zwischen \(G_{f}\) und der \(x\)-Achse im Bereich \(2 \leq x \leq 6\) sowie die dazu symmetrische Fläche im II-Quadranten. Berechnen Sie unter Verwendung der in Aufgabe 1d angegebenen Stammfunktion \(F\), wie viele Quadratmeter als Werbefläche zur Verfügung stehen.

    (3 BE)

  • Betrachtet wird das von den Graphen \(G_{g}\) und \(G_{h}\) eingeschlossene Flächenstück. Schraffieren Sie den Teil dieses Flächenstücks, dessen Inhalt mit dem Term \(\displaystyle 2 \cdot \int_{0}^{2{,}5} (x - g(x))dx\) berechnet werden kann.

    (2 BE)

  • Berechnen Sie den Inhalt des Flächenstücks, das von \(G_{f}\), der \(y\)-Achse sowie den Geraden mit den Gleichungen \(y = 1\) und \(x = 5\) begrenzt wird. Einen Teil dieses Flächenstücks nimmt das zu \(s = 5\) gehörige Rechteck ein. Bestimmen Sie den prozentualen Anteil des Flächeninhalts dieses Rechtecks am Inhalt des Flächenstücks.

    (7 BE)

  • Berechnen Sie den Inhalt der Fläche, die von \(G_{f}\) und der Strecke \([AB]\) eingeschlossen wird.

    (5 BE)

  • Die von der Anlage produzierte elektrische Energie wird vollständig in das Stromnetz eingespeist. Der Hauseigentümer erhält für die eingespeiste elektrische Energie eine Vergütung von 10 Cent pro Kilowattstunde (kWh).

    Die in \([4;20]\) definierte Funktion \(x \mapsto E(x)\) gibt die elektrische Energie in kWh an, die die Anlage am betrachteten Tag von 4:00 Uhr bis x Stunden nach Mitternacht in das Stromnetz einspeist.

    Es gilt \(E'(x) = p(x)\) für \(x \in [4;20]\).

    Bestimmen Sie mithilfe der Abbildung einen Näherungswert für die Vergütung, die der Hauseigentümer für die von 10:00 Uhr bis 14:00 Uhr in das Stromnetz eingespeiste elektrische Energie erhält.

    (3 BE)

  • Es wird das Flächenstück zwischen \(G_{g}\) und der \(x\)-Achse im Bereich \(-\ln{3} \leq x \leq b\) mit \(b \in \mathbb R^{+}\) betrachtet. Bestimmen Sie den Wert von \(b\) so. dass die \(y\)-Achse dieses Flächenstück halbiert.

    (6 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion  \(f \colon x \mapsto -x^2 + 2ax\) mit \(a \in \; ]1;+\infty[\). Die Nullstellen von \(f\) sind \(0\) und \(2a\).

    Zeigen Sie, dass das Flächenstück, das der Graph von \(f\) mit der \(x\)-Achse einschließt, den Inhalt \(\frac{4}{3}a^3\) hat.

    (2 BE) 

  • Bestimmen Sie nun mithilfe des Graphen von \(\boldsymbol{F}\) aus Aufgabe 2c den Flächeninhalt der gesamten Vorderseite der Dachgaube (einschließlich des Fensters).

    Beschreiben Sie unter Einbeziehung dieses Flächeninhalts die wesentlichen Schritte eines Lösungswegs, mit dem der Wert von \(a\) rechnerisch so bestimmt werden könnte, dass bei einer Fensterhöhe von 1,50 m der Teil der Vorderseite der Dachgaube, der in Abbildung 3 schraffiert dargestellt ist, den Flächeninhalt 6 m2 hat.

    (5 BE) 

  • Die Gerade mit der Gleichung \(y = 1{,}1\) teilt im Modell den vom Kunstwerk eingenommenen Teil der Wand in zwei unterschiedlich gestaltete Bereiche. Beschreiben Sie, wie man mithilfe der Funktion \(q\) das Verhältnis der Flächeninhalte dieser beiden Bereiche näherungsweise bestimmen kann. Geben Sie dazu geeignete Ansätze an und kommentieren Sie diese.

    (4 BE)

  • Berechnen Sie den Inhalt der Fläche, die \(G_f\) mit den Koordinatenachsen und der Geraden \(x = 4\) einschließt.

    (4 BE)

  • Bestimmen Sie \(\displaystyle \int_1^4 f(t)\,dt\) näherungsweise mithilfe von Abbildung 3. Deuten Sie den Wert des Integrals im Sachzusammenhang.

    (5 BE)

  • Berechnen Sie mithilfe der Funktion \(q\) einen Näherungswert für den Flächeninhalt \(A\) des vom Kunstwerk eingenommenen Teils der Wand.

    (4 BE)

  • Berechnen Sie den Wert des bestimmten Integrals \(\displaystyle \int_0^2 f(x)\,dx\,\).

    Warum stimmt der Wert dieses Integrals nicht mit dem Inhalt der Fläche überein, die für \(0 \leq x \leq 2\) zwischen dem Graphen von \(f\) und der \(x\)-Achse liegt?

    (5 BE)

  • Skizzieren Sie den Graphen der in \(\mathbb R\) definierten Funktion \(f : x \mapsto 4 - x^2\). Berechnen Sie den Inhalt des Flächenstücks, das der Graph von \(f\) mit der \(x\)-Achse einschließt.

    (5 BE)

  • Berechnen Sie den Inhalt des Flächenstücks, das von \(G_f\), der \(x\)-Achse und der Strecke \([PQ_E]\) begrenzt wird.

    (6 BE)

  • Bestimmen Sie den Inhalt des Flächenstücks, das \(G_h\), die Koordinatenachsen und die Gerade mit der Gleichung \(x = 5\) einschließen. Interpretieren Sie das Ergebnis im Sachzusammenhang.

    (6 BE)

  • Der Graph von \(f\), die \(x\)-Achse und die Gerade \(x = u\) mit \(u \in \mathbb R^+\) schließen für \(0 \leq x \leq u\) ein Flächenstück mit dem Inhalt \(A(u)\) ein.

    Zeigen Sie, dass \(A(u) = 2 - 2e^{-0{,}5u^2}\) gilt. Geben Sie \(\lim \limits_{u \, \to \, + \infty} A(u)\) an und deuten Sie das Ergebnis geometrisch.

    (6 BE)

Seite 2 von 3