Erwartungswert einer Zufallsgröße

  • Die Zufallsgröße \(X\) kann ausschließlich die Werte \(1\), \(4\), \(9\) und \(16\) annehmen. Bekannt sind \(P(X = 9) = 0{,}2\) und \(P(X = 16) = 0{,}1\) sowie der Erwartungswert \(E(X) = 5\). Bestimmen Sie mithilfe eines Ansatzes für den Erwartungswert die Wahrscheinlichkeit \(P(X = 1)\) und \(P(X = 4)\).

    (3 BE)

  • Bei einer Losbude wird damit geworben, dass jedes Los gewinnt. Die Lose und die zugehörigen Sachpreise können drei Kategorien zugeordnet werden, die mit „Donau", „Main" und „Lech" bezeichnet werden. Im Lostopf befinden sich viermal so viele Lose der Kategorie „Main" wie Lose der Kategorie „Donau". Ein Los kostet 1 Euro. Die Inhaberin der Losbude bezahlt im Einkauf für einen Sachpreis in der Kategorie „Donau" 8 Euro, in der Kategorie „Main" 2 Euro und in der Kategorie „Lech" 20 Cent. Ermitteln Sie, wie groß der Anteil der Lose der Kategorie „Donau" sein muss, wenn die Inhaberin im Mittel einen Gewinn von 35 Cent pro Los erzielen will.

    (5 BE)

  • Die Zufallsgröße \(X\) beschreibt die Summe der beiden erzielten Zahlen. Bestimmen Sie, für welchen Wert von \(p\) die Zufallsgröße \(X\) den Erwartungswert 3 hat.

    (4 BE)

  • Die Zufallsgröße \(Y\) kann die Werte 0, 1, 2, 3 und 4 annehmen. Die Tabelle zeigt die Wahrscheinlichkeitsverteilung von \(Y\) mit \(a, b \in [0;1]\).

    Tabelle Stochastik 1 Prüfungsteil B Mathematik Abitur Bayern 2020

    Beschreiben Sie, woran man unmittelbar erkennen kann, dass der Erwartungswert von \(Y\) gleich 2 ist.

    (2 BE)

  • Abbildung Aufgabe 3 Stochastik 1 Prüfungsteil B Mathematik Abitur Bayern 2021

    Der Freizeitpark veranstaltet ein Glücksspiel, bei dem Eintrittskarten für den Freizeitpark gewonnen werden können. Zu Beginn des Spiels wirft man einen Würfel, dessen Seiten mit den Zahlen 1 bis 6 durchnummeriert sind. Erzielt man dabei die Zahl 6, darf man anschließend einmal an einem Glücksrad mit drei Sektoren drehen (vgl. schematische Abbildung). Wird Sektor K erzielt, gewinnt man eine Kinderkarte im Wert von 28 Euro, bei Sektor E eine Erwachsenenkarte im Wert von 36 Euro. Bei Sektor N geht man leer aus. Der Mittelpunktswinkel des Sektors N beträgt 160°. Die Größen der Sektoren K und E sind so gewählt, dass pro Spiel der Gewinn im Mittel drei Euro beträgt. Bestimmen Sie die Größe der Mittelpunktswinkel der Sektoren K und E.

    (6 BE)

  • Bei einer Werbeaktion werden den Fruchtgummitüten Rubbellose beigelegt. Beim Freirubbeln werden auf dem Los bis zu drei Goldäpfel sichtbar. Die Zufallsgröße \(X\) beschreibt die Anzahl der Goldäpfel, die beim Freirubbeln sichtbar werden. Die Tabelle zeigt die Wahrscheinlichkeitsverteilung von \(X\).

    Tabelle Aufgabe 4 Stochastik 2 Prüfungsteil B Mathematik Abitur Bayern 2021

    Die Zufallsgröße \(X\) hat den Erwartungswert 1. Bestimmen Sie die Wahrscheinlichkeiten \(p_{0}\) und \(p_{1}\) und berechnen Sie die Varianz von \(X\).

    (3 BE)

  • Ohne Kenntnis des Erwartungswerts ist die Varianz in der Regel nicht aussagekräftig. Daher wird für den Vergleich verschiedener Zufallsgrößen oft der Quotient aus der Standardabweichung und dem Erwartungswert betrachtet, der als relative Standardabweichung bezeichnet wird.

    Die Zufallsgröße \(Y_{n}\) beschreibt die Anzahl der Goldäpfel, die beim Freirubbeln von \(n\) Losen sichtbar werden. Es gilt \(E(Y_{n}) = n\) und \(Var(Y_{n}) = n\). Bestimmen Sie den Wert von \(n\), für den die relative Standardabweichung 5 % beträgt.

    (2 BE)

  • Die drei leeren Seiten des Würfels sollen jeweils mit einer positiven geraden Zahl beschriftet werden. Ermitteln Sie eine Möglichkeit für die Beschriftung dieser drei Seiten, sodass bei einmaligem Werfen des Würfels der Erwartungswert für die Zahl \(\dfrac{31}{6}\) beträgt.

    (3 BE)

  • Allgemein gilt für eine Zufallsgröße \(X\) mit Erwartungswert \(\mu\) und Standardabweichung \(\sigma\) folgende Ungleichung für \(k > 0\):

    \[P(\mu - k \cdot \sigma < X < \mu + k \cdot \sigma) \geq 1 - \frac{1}{k^2}\]

    Erläutern Sie die Aussage dieser Ungleichung für \(k = 2\).

    (3 BE)

  • Ermitteln Sie, wie viele Spiele durchgeführt werden müssen, damit der Erwartungswert der Einnahme für die beiden Aktionen 300 € beträgt.

    (4 BE)

  • Bei einem zweiten Spieler beträgt nach mehrmaligem Drehen des Glücksrads die Summe der erzielten Zahlen 60. Er möchte nun das Spiel entweder sofort beenden oder das Glücksrad genau ein weiteres Mal drehen. Berechnen Sie für den Fall, dass sich der Spieler für die weitere Drehung entscheiden sollte, den Erwartungswert für die Auszahlung. Geben Sie eine Empfehlung ab, ob sich der Spieler für das Beenden des Spiels oder für die weitere Drehung entscheiden sollte, und begründen Sie Ihre Empfehlung.

    (4 BE) 

  • Wenn sich ein Spieler vor dem Spiel dafür entscheidet, das Glücksrad, sofern er keine „0" erzielt, n-mal zu drehen, dann kann der Erwartungswert für die Auszahlung mit dem Term \(5n \cdot 0{,}9^n\) berechnet werden. Beurteilen Sie die folgende Aussage:

    Es gibt zwei, aber nicht drei aufeinanderfolgende Werte von \(n\), für die die Erwartungswerte für die Auszahlung übereinstimmen.

    (4 BE) 

  • Die Zufallsgröße \(X\) beschreibt die Anzahl der von einem Kandidaten zu lösenden Aufgaben aus dem Fach Mathematik. Der Tabelle kann die Wahrscheinlichkeitsverteilung von \(X\) entnommen werden. Ermitteln Sie den fehlenden Wert der Wahrscheinlichkeitsverteilung sowie den Erwartungswert von \(X\,\).

     

    \(\displaystyle x\) \(\displaystyle 0\) \(\displaystyle 1\) \(\displaystyle 2\) \(\displaystyle 3\) \(\displaystyle 4\)
    \(\displaystyle P(X = x)\) \(\displaystyle \frac{1}{9}\) \(\displaystyle \frac{1}{3}\) \(\displaystyle \frac{13}{36}\)   \(\displaystyle \frac{1}{36}\)

     

    (3 BE)

  • Die Windkraftgegner schließen sich zu einer Bürgerinitiative zusammen.

    Zur Verbesserung ihrer finanziellen Mittel hat die Bürgerinitiative auf dem Gemeindefest ein Glücksrad mit zehn gleich großen Sektoren aufgebaut (vgl. Abbildung). Ein Spiel besteht aus dem einmaligen Drehen des Glücksrads; die erzielte Zahl gibt die Kategorie des Preises an, den der Spieler erhält.

    Abbildung Teilaufgabe 2a: Glücksrad

    Ein Preis der Kategorie 1 ist für die Bürgerinitiative mit Unkosten in Höhe von zehn Euro, ein Preis der Kategorie 2 mit Unkosten in Höhe von fünf Euro verbunden. Preise der Kategorie 3 und 4 werden von Sponsoren gestellt und verursachen keine Unkosten. Bestimmen Sie den im Mittel pro Spiel zu erwartenden Gewinn der Bürgerinitiative, wenn der Einsatz für ein Spiel 2,50 Euro beträgt und keine weiteren Unkosten anfallen.

    (5 BE)

  • Berechnen Sie, welcher Geldbetrag im Fall eines Gewinns ausgezahlt werden muss, damit im Mittel eine Einnahme von 1,25 Euro pro Spiel für die Ausstattung des Spielbereichs erwartet werden kann.

    (4 BE)

  • Bestimmen Sie Erwartungswert und Varianz der Zufallsgröße \(X\).

    (Ergebnis: \(E(X) = 2\), \(Var(X) = \frac{6}{11}\))

    (3 BE)

  • Abbildung 2 zeigt die Wahrscheinlichkeitsverteilung einer binomialverteilten Zufallsgröße \(Y\) mit den Parametern \(n = 3\) und \(p = \frac{2}{3}\). Zeigen Sie rechnerisch, dass \(Y\) den gleichen Erwartungswert wie die Zufallsgröße \(X\), aber eine größere Varianz als \(X\) besitzt.

    Erläutern Sie, woran man durch Vergleich der Abbildungen 1 und 2 erkennen kann, dass \(Var(Y) > Var(X)\) gilt.

    (4 BE)

Seite 2 von 2