Monotonieverhalten

  • Bei Dauerinfusionen dieses Medikaments muss die Wirkstoffkonzentration spätestens 60 Minuten nach Beginn der Infusion dauerhaft größer als 0,75\(\frac{\sf{mg}}{\sf{l}}\) sein und stets mindestens 25 % unter der gesundheitsschädlichen Grenze von 2\(\frac{\sf{mg}}{\sf{l}}\) liegen. Ermitteln Sie \(\lim \limits_{x\,\to\,+\infty} k(x)\) und beurteilen Sie beispielsweise unter Verwendung der bisherigen Ergebnisse, ob gemäß der Modellierung diese beiden Bedingungen erfüllt sind.

    (5 BE)

  • Untersuchen Sie rechnerisch das Monotonieverhalten von \(G_{f}\).

    (zur Kontrolle: \(f'(x) = \dfrac{4x}{(x^{2} + 1)^{2}}\))

    (4 BE)

  • Skizzieren Sie den Graphen der Funktion \(A\) unter Verwendung der bisherigen Ergebnisse in der Abbildung 2.

    Abbildung 2 Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2020

    (3 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f\) mit \(f(x) = e^{2x + 1}\). Zeigen Sie, dass \(f\) umkehrbar ist, und ermitteln Sie einen Term der Umkehrfunktion von \(f\).

    (4 BE)

  • Bestimmen Sie das jeweilige Monotonieverhalten von \(f\) in den drei Teilintervallen \(]-\infty;-2[\), \(]-2;2[\) und \(]2;+\infty[\) der Definitionsmenge. Berechnen Sie zudem die Steigung der Tangente an \(G_{f}\) im Punkt \((0|f(0))\).

    (zur Kontrolle: \(f'(x) = -\dfrac{6 \cdot (x^{2} + 4)}{(x^{2} - 4)^{2}}\))

    (5 BE)

  • Die Punkte \(A(3|3{,}6)\) und \(B(8|0{,}8)\) liegen auf \(G_{f}\); zwischen diesen beiden Punkten verläuft \(G_{f}\) unterhalb der Strecke \([AB]\).

    Skizzieren Sie \(G_{f}\) im Bereich \(-10 \leq x \leq 10\) unter Verwendung der bisherigen Informationen in einem Koordinatensystem.

    (4 BE)

  • Die in \(\mathbb R\) definierte Funktion \(F\) ist diejenige Stammfunktion von \(f\), deren Graph durch den Punkt \(T(-1|2)\) verläuft.

    Begründen Sie mithilfe der Abbildung, dass der Graph von \(F\) im Punkt \(T\) einen Tiefpunkt besitzt.

    (2 BE)

  • Skizzieren Sie in die Abbildung den Graphen von \(F\). Berücksichtigen Sie dabei insbesondere, dass \(F(1) \approx 3{,}5\) und \(\lim \limits_{x\,\to\,+\infty} F(x) = 2\) gilt.

    (3 BE)

  • Betrachtet wird die in \(\mathbb R\) definierte Funktion \(g \colon x \mapsto \dfrac{e^{x}}{e^{x} + 1}\). Ihr Graph wird mit \(G_{g}\) bezeichnet.

    Zeigen Sie, dass \(g\) streng monoton zunehmen ist und die Wertemenge \(]0;1[\) besitzt.

    (zur Kontrolle: \(g'(x) = \dfrac{e^{x}}{(e^{x} + 1)^{2}}\))

    (5 BE)

  • Untersuchen Sie rechnerisch das Monotonieverhalten von \(f\). Ergänzen Sie in der Abbildung 1 die Koordinatenachsen und skalieren Sie diese passend.

    (5 BE)

  • Der Graph einer Stammfunktion von \(g\) verläuft durch \(P\). Skizzieren Sie diesen Graphen in Abbildung 2.

    (3 BE) 

  • Der Graph einer Stammfunktion von \(g\) verläuft durch \(P\). Skizzieren Sie diesen Graphen in Abbildung 2.

    (3 BE) 

  • Weisen Sie rechnerisch nach, dass \(G_f\) in \(\mathbb R\) streng monoton steigt.

    (zur Kontrolle: \(f'(x)= \displaystyle \frac{18e^x}{(e^x + 9)^2}\))

    (3 BE)

  • Bestimmen Sie rechnerisch die Koordinaten desjenigen Graphenpunkts \(Q_E(x_E|y_E)\), der von \(P\) den kleinsten Abstand hat. Tragen Sie \(Q_E\) in Abbildung 1 ein.

    (zur Kontrolle: \(x_E = 1\))

    (7 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f : x \mapsto 6 \cdot e^{-0{,}5x} + x\). Der Graph von \(f\) wird mit \(G_f\) bezeichnet.

     

    Untersuchen Sie das Monotonie- und das Krümmungsverhalten von \(G_f\). Bestimmen Sie Lage und Art des Extrempunkts \(E(x_E|y_E)\) von \(G_f\).

    (zur Kontrolle: \(x_E = 2 \cdot \ln 3; \enspace f''(x) = 1{,}5 \cdot e^{-0{,}5x}\))

    (10 BE)

  • Abbildung 2 zeigt den Graphen \(G_g\) einer in \(\mathbb R \backslash \{1\}\) definierten gebrochen-rationalen Funktion \(g\) mit folgenden Eigenschaften:

    • Die Funktion \(g\) hat in \(x = 1\) eine Polstelle ohne Vorzeichenwechsel;

    • \(G_g\) verläuft stets oberhalb seiner schrägen Asymptote, die durch die Gleichung \(y = \frac{1}{2}x - 1\) gegeben ist;

    • die einzige Nullstelle von \(g\) ist \(x = -1\).

    Abbildung 2, Teilaufgabe 2a, Graph der gebrochen-rationalen Funktion g Abb. 2

    Ermitteln Sie mithilfe von Abbildung 2 näherungsweise den Wert der Ableitung \(g'\) von \(g\) an der Stelle \(x = -1\); veranschaulichen Sie Ihr Vorgehen durch geeignete Eintragungen in der Abbildung.

    Aus der Gleichung der schrägen Asymptote ergibt sich unmittelbar das Verhalten der Ableitung \(g'\) für \(x \to +\infty\) und \(x \to -\infty\). Geben Sie dieses Verhalten an und skizzieren Sie den Graphen von \(g'\) in Abbildung 2.

    (6 BE)

  • Gegeben ist die Schar der Funktionen \(f_a : x \mapsto 6 \cdot e^{-0{,}5x} - a \cdot x\) mit \(a \in \mathbb R^+\) und Definitionsmenge \(\mathbb R\).

     

    Weisen Sie nach, dass die Graphen aller Funktionen der Schar die \(y\)-Achse im selben Punkt schneiden und in \(\mathbb R\) streng monoton fallend sind. Zeigen Sie, dass \(\lim \limits_{x \, \to \, +\infty} f_a(x) = -\infty\) gilt.

    (5 BE)

  • Bestimmen Sie rechnerisch Lage und Art der Extrempunkte von \(G_f\,\).

    (8 BE)

  • Für \(x \geq 0\) beschreibt die Funktion \(h\) modelhaft die zeitliche Entwicklung des momentanen Schadstoffausstoßes einer Maschine. Dabei ist \(x\) die seit dem Start der Maschine vergangene Zeit in Minuten und \(h(x)\) die momentane Schadstoffausstoßrate in Milligramm pro Minute.

     

    Geben Sie in diesem Sachzusammenhang die Bedeutung des Monotonieverhaltens von \(G_h\) sowie des Grenzwerts von \(h\) für \(x \to +\infty\) an.

    (3 BE)

Seite 3 von 3