Prüfungsteil A

  • Die Gerade \(g\) verläuft durch die Punkte \(A\,(0|1|2)\) und \(B\,(2|5|6)\).

    Zeigen Sie, dass die Punkte \(A\) und \(B\) den Abstand 6 haben.

    Die Punkte \(C\) und \(D\) liegen auf \(g\) und haben von \(A\) jeweils den Abstand 12. Bestimmen Sie die Koordinaten von \(C\) und \(D\).

    (3 BE)

  • Die Punkte \(A\), \(B\) und \(E\,(1|2|5)\) sollen mit einem weiteren Punkt die Eckpunkte eines Parallelogramms bilden. Für die Lage des vierten Eckpunkts gibt es mehrere Möglichkeiten.

    Geben Sie für zwei dieser Möglichkeiten die Koordinaten des vierten Eckpunkts an.

    (2 BE)

  • Betrachtet wird die Pyramide \(ABCDS\) mit \(A\,(0|0|0)\), \(B\,(4|4|2)\), \(C\,(8|0|2)\), \(D\,(4|-4|0)\) und \(S\,(1|1|-4)\). Die Grundfläche \(ABCD\) ist ein Parallelogramm.

    Weisen Sie nach, dass das Parallelogramm \(ABCD\) ein Rechteck ist.

    (2 BE)

  • Die Kante \([AS]\) steht senkrecht auf der Grundfläche \(ABCD\). Der Flächeninhalt der Grundfläche beträgt \(24\sqrt{2}\).

    Ermitteln Sie das Volumen der Pyramide.

    (3 BE)

  • Die Abbildung zeigt die Pyramide \(ABCDS\) mit quadratischer Grundfläche \(ABCD\). Der Pyramide ist eine Stufenpyramide einbeschrieben, die aus Würfeln mit der Kantenlänge 1 besteht.

    Abbildung zu Teilaufgabe 2 Geometrie 2 Prüfungsteil A Mathematik Abitur Bayern 2015

    Geben Sie das Volumen der Stufenpyramide und die Höhe der Pyramide \(ABCDS\) an.

    (2 BE)

  • Bestimmen Sie unter Verwendung eines geeignet gewählten kartesischen Koordinatensystems eine Gleichung für die Gerade, die durch die Punkte \(B\) und \(S\) verläuft.

    Zeichnen Sie das gewählte Koordinatensystem in die Abbildung ein.

    (3 BE)

  • Gegeben ist die Funktion \(f\) mit \(f(x) = x^3 - 6x^2 + 11x - 6\) und \(x \in \mathbb R\).

    Weisen Sie nach, dass der Wendepunkt des Graphen von \(f\) auf der Geraden mit der Gleichung \(y = x - 2\) liegt.

    (3 BE)

  • Der Graph von \(f\) wird verschoben. Der Punkt \((2|0)\) des Graphen der Funktion \(f\) besitzt nach der Verschiebung die Koordinaten \((3|2)\). Der verschobene Graph gehört zu einer Funktion \(h\). Geben Sie eine Gleichung von \(h\) an.

    (2 BE)

  • Die Gerade \(g\) verläuft durch die Punkte \(A\,(0|1|2)\) und \(B\,(2|5|6)\).

    Zeigen Sie, dass die Punkte \(A\) und \(B\) den Abstand 6 haben.

    Die Punkte \(C\) und \(D\) liegen auf \(g\) und haben von \(A\) jeweils den Abstand 12. Bestimmen Sie die Koordinaten von \(C\) und \(D\).

    (3 BE)

  • Die Punkte \(A\), \(B\) und \(E\,(1|2|5)\) sollen mit einem weiteren Punkt die Eckpunkte eines Parallelogramms bilden. Für die Lage des vierten Eckpunkts gibt es mehrere Möglichkeiten.

    Geben Sie für zwei dieser Möglichkeiten die Koordinaten des vierten Eckpunkts an.

    (2 BE)

  • Zeigen Sie, dass \(\displaystyle F(b) = \int_{3}^{b} f(x) \, dx\) mit \(b \in \mathbb R\) gilt.

    (2 BE)

  • Die Funktion \(F\) ist die in \(\mathbb R\) definierte Stammfunktion von \(f\) mit \(F(3) = 0\).

    Geben Sie mithilfe der Abbildung einen Näherungswert für die Ableitung von \(F\) an der Stelle \(x = 2\) an.

    (1 BE)

  • Die Abbildung zeigt den Graphen der in \(\mathbb R\) definierten Funktion \(f\).

    Abbildung zu Teilaufgabe 5 - Analysis 1 - Prüfungsteil A . Mathematik Abitur Bayern 2016

    Bestimmen Sie mithilfe der Abbildung einen Näherungswert für \(\displaystyle \int_{3}^{5} f(x) \,dx\).

    (2 BE)

  • Begründen Sie, dass \(2{,}5\) die \(x\)-Koordinate des Wendepunkts von \(G_{f}\) ist.

    (2 BE)

  • Gegeben ist eine in \(\mathbb R\) definierte ganzrationale Funktion \(f\) dritten Grades, deren Graph \(G_{f}\) an der Stelle \(x = 1\) einen Hochpunkt und an der Stelle \(x = 4\) einen Tiefpunkt besitzt.

    Begründen Sie, dass der Graph der Ableitungsfunktion \(f'\) von \(f\) eine Parabel ist, welche die \(x\)-Achse in den Punkten \((1|0)\) und \((4|0)\) schneidet und nach oben geöffnet ist.

    (3 BE)

  • Skizzieren Sie im Bereich \(-1 \leq x \leq 4\) den Graphen einer in \(\mathbb R\) definierten Funktion \(f\) mit den folgenden Eigenschaften:

    ● \(f\) ist nur an der Stelle \(x = 3\) nicht differenzierbar.

    ● \(f(0)\) = 2 und für die Ableitung \(f'\) von \(f\) gilt: \(f'(0) = -1\).

    ● Der Graph von \(f\) ist im Bereich \(-1 < x < 3\) linksgekrümmt.

    (3 BE)

  • Zeigen Sie, dass der Graph der in \(\mathbb R\) definierten Funktion \(g \colon x \mapsto x^{2} \cdot \sin{x}\) punktsymmetrisch bezüglich des Koordinatenursprungs ist, und geben Sie den Wert des Integrals \(\displaystyle \int_{-\pi}^{\pi} x^{2} \cdot \sin{x}\, dx\) an.

    (3 BE)

  • Gegeben ist die Funktion \(f \colon x \mapsto \sqrt{1 - \ln{x}}\) mit maximaler Definitionsmenge \(D\).

    Bestimmen Sie \(D\).

    (2 BE)

  • Die Abbildung zeigt den Graphen der in \(\mathbb R\) definierten Funktion \(f\).

    Abbildung zu Teilaufgabe 5 - Analysis 1 - Prüfungsteil A . Mathematik Abitur Bayern 2016

    Bestimmen Sie mithilfe der Abbildung einen Näherungswert für \(\displaystyle \int_{3}^{5} f(x) \,dx\).

    (2 BE)

  • Geben Sie jeweils den Term und den Definitionsbereich einer Funktion an, die die angegebene(n) Eigenschaft(en) besitzt.

    Der Punkt \((2|0)\) ist ein Wendepunkt des Graphen von \(g\).

    (2 BE)