Stochastik 1

  • Es ist zu vermuten, dass unter den Jugendlichen, die ein Smartphone besitzen, der Anteil derjenigen, die eine feste Spielkonsole besitzen, größer ist als unter den Jugendlichen, die kein Smartphone besitzen. Bestimmen Sie für die in der Tabelle erfassten 200 Jugendlichen, wie groß die Anzahl derjenigen Personen, die sowohl ein Smartphone als auch eine feste Spielkonsole besitzen, mindestens sein muss, damit die Vermutung für die in der Tabelle erfassten Jugendlichen zutrifft.

    (4 BE)

  • Bei der Wintersportart Biathlon wird bei jeder Schießanlage auf fünf Scheiben geschossen. Ein Biathlet tritt bei einem Einzelrennen zu einer Schießeinlage an, bei der er auf jede Scheibe einen Schuss abgibt. Diese Schießeinlage wird modellhaft durch eine Bernoullikette mit der Länge 5 und der Trefferwahrscheinlichkeit \(p\) beschrieben.

    Geben Sie für die folgenden Ereignisse \(A\) und \(B\) jeweils einen Term an, der die Wahrscheinlichkeit des Ereignisses in Abhängigkeit von \(p\) beschreibt.

    \(A\): „Der Biathlet trifft bei genau vier Schüssen."

    \(B\): „Der Biathlet trifft nur bei den ersten beiden Schüssen."

    (3 BE)

  • Erläutern Sie anhand eines Beispiels, dass die modellhafte Beschreibung der Schießeinlage durch eine Bernoullikette unter Umständen der Realität nicht gerecht wird.

    (2 BE)

  • Ein Moderator lädt zu einer Talkshow drei Politiker, eine Journalistin und zwei Mitglieder einer Bürgerinitiative ein. Für die Diskussionsrunde ist eine halbkreisförmige Sitzordnung vorgesehen, bei der nach den Personen unterschieden wird und der Moderator den mittleren Platz einnimmt.

    Geben Sie einen Term an, mit dem die Anzahl der möglichen Sitzordnungen berechnet werden kann, wenn keine weiteren Einschränkungen berücksichtigt werden.

    (1 BE)

  • Der Sender hat festgestellt, dass unmittelbar neben dem Moderator auf einer Seite die Journalistin und auf der anderen Seite einer der Politiker sitzen soll. Berechnen Sie unter Berücksichtigung dieser weiteren Einschränkung die Anzahl der möglichen Sitzordnungen. 

    (4 BE)

  • Der Marketingchef einer Handelskette plant eine Werbeaktion, bei der ein Kunde die Höhe des Rabatts bei seinem Einkauf durch zweimaliges Drehen an einem Glücksrad selbst bestimmen kann. Das Glücksrad hat zwei Sektoren, die mit den Zahlen 5 bzw. 2 beschriftet sind (vgl. Abbildung).

    Abbildung zu Teilaufgabe 1 Stichhaltig 1 Prüfungsteil B Mathematik Abitur Bayern 2015

     

    Der Rabatt in Prozent errechnet sich als Produkt der beiden Zahlen, die der Kunde bei zweimaligem Drehen am Glücksrad erzielt.

    Die Zufallsgröße \(X\) beschreibt die Höhe dieses Rabatts in Prozent, kann also die Werte 4, 10 oder 25 annehmen. Die zahl 5 wird beim Drehen des Glücksrads mit der Wahrscheinlichkeit \(p\) erzielt.

    Vereinfachend soll davon ausgegangen werden, dass jeder Kunde genau einen Einkauf tätigt und auch tatsächlich am Glücksrad dreht.

    Ermitteln Sie mithilfe eines Baumdiagramms die Wahrscheinlichkeit dafür, dass ein Kunde bei seinem Einkauf einen Rabatt von 10 % erhält.

    (Ergebnis: \(2p - 2p^2\))

    (3 BE)

  • Zeigen Sie, dass für den Erwartungswert \(E(X)\) der Zufallsgröße \(X\) gilt: \(E(X) = 9p^2 + 12p + 4\).

    (3 BE)

  • Die Geschäftsführung will im Mittel für einen Einkauf einen Rabatt von 16 % gewähren. Berechnen Sie für diese Vorgabe den Wert der Wahrscheinlichkeit \(p\).

    (3 BE)

  • Die Wahrscheinlichkeit, dass ein Kunde bei seinem Einkauf den niedrigsten Rabatt erhält, beträgt \(\sf{\frac{1}{9}}\). Bestimmen Sie, wie viele Kunden mindestens an dem Glücksrad drehen müssen, damit mit einer Wahrscheinlichkeit von mehr als 99 % mindestens einer der Kunden den niedrigsten Rabatt erhält.

    (4 BE)

  • Eine der Filialen der Handelskette befindet sich in einem Einkaufszentrum, das zu Werbezwecken die Erstellung einer Smartphone-App in Auftrag geben will. Diese App soll die Kunden beim Betreten des Einkaufszentrums über aktuelle Angebote und Rabattaktionen der beteiligten Geschäfte informieren. Da dies mit Kosten verbunden ist, will der Finanzchef der Handelskette einer Beteiligung an der App nur zustimmen, wenn mindestens 15 % der Kunden der Filiale bereit sind, diese App zu nutzen. Der Marketingchef warnt jedoch davor, auf eine Beteiligung an der App zu verzichten, da dies zu einem Imageverlust führen könnte.

    Um zu einer Entscheidung zu gelangen, will die Geschäftsführung der Handelskette eine der beiden folgenden Nullhypothesen auf der Basis einer Befragung von 200 Kunden auf einem Signifikanzniveau von 10 % testen:

    I   „Weniger als 15 % der Kunden sind bereit, die App zu nutzen."

    II  „Mindestens 15 % der Kunden sind bereit, die App zu nutzen."

    Nach Abwägung der möglichen Folgen, die der Finanzchef und der Marketingchef aufgezeigt haben, wählt die Geschäftsleitung für den Test die Nullhypothese II. Bestimmen Sie die zugehörige Entscheidungsregel.

    (4 BE)

  • Entscheiden Sie, ob bei der Abwägung, die zur Wahl der Nullhypothese II führte, die Befürchtung eines Imageverlustes oder die Kostenfrage als schwerwiegender erachtet wurde. Erläutern Sie Ihre Entscheidung.

    (3 BE)

  • Die Zufallsgröße \(X\) ordnet jedem Ergebnis die Anzahl der entsprechenden Münzwürfe zu. Berechnen Sie den Erwartungswert von \(X\).

    (3 BE)

  • Bei einem Zufallsexperiment wird eine ideale Münze so lange geworfen, bis zum zweiten Mal Zahl \((Z)\) oder zum zweiten Mal Wappen \((W)\) oben liegt. Als Ergebnismenge wird festgelegt: \(\{ZZ; WW; ZWZ; ZWW; WZZ; WZW\}\).

    Begründen Sie, dass dieses Zufallsexperiment kein Laplace-Experiment ist.

    (2 BE)

  • Die beiden Baumdiagramme gehören zum selben Zufallsexperiment mit den Ereignissen \(A\) und \(B\).

    Berechnen Sie die Wahrscheinlichkeit \(P(B)\) und ergänzen Sie anschließend an allen Ästen des rechten Baumdiagramms die zugehörigen Wahrscheinlichkeiten.

     

    Abbildung Baumdiagramm links zu Teilaufgabe 1 - Stochastik 1 - Prüfungsteil A - Mathematik Abitur Bayern 2016
    Abbildung Baumdiagramm rechts zu Teilaufgabe 1 - Stochastik 1 - Prüfungsteil A - Mathematik Abitur Bayern 2016

     

    (Teilergebnis: \(P(B) = 0{,}5\))

    (5 BE)

  • Ein Getränkehersteller führt eine Werbeaktion durch, um die Verkaufszahlen seiner Saftschorlen zu erhöhen. Bei 100000 der für die Werbeaktion produzierten zwei Millionen Flaschen wird auf der Innenseite des Verschlusses eine Marke für einen Geldgewinn angebracht. Von den Gewinnmarken sind 12000 jeweils 5 € wert, der Rest ist jeweils 1 € wert. Alle Flaschen der Werbeaktion werden zufällig auf Kästen verteilt. Im Folgenden werden nur Flaschen aus der Werbeaktion betrachtet.

    Es wird eine Flasche geöffnet. Betrachtet werden folgende Ereignisse:

    \(A\): „Der Verschluss enthält eine Gewinnmarke."

    \(B\): „Der Verschluss enthält eine Gewinnmarke im Wert von 1 €."

    Berechnen Sie die Wahrscheinlichkeiten \(P(A)\) und \(P(B)\).

    (2 BE)

  • Es werden mehrere Flaschen geöffnet und für jede dieser Flaschen wird festgestellt, ob das Ereignis \(A\) eintritt. Begründen Sie, dass dieses Zufallsexperiment näherungsweise durch eine Bernoullikette beschrieben werden kann.

    (2 BE)

  • Bestimmen Sie unter Zuhilfenahme des Tafelwerks, wie viele Flaschen man mindestens öffnen muss, um mit einer Wahrscheinlichkeit von mehr als 5 % mindestens zwei Gewinnmarken zu finden.

    (4 BE)

  • Berechnen Sie den Gesamtwert der Gewinnmarken, die Kunden beim Öffnen der 20 Flaschen eines Kastens im Mittel in den Verschlüssen finden.

    (3 BE)

  • Nachdem die zwei Millionen Flaschen verkauft sind, wird die Werbeaktion fortgesetzt. Der Getränkehersteller verspricht, dass weiterhin jede 20. Flasche eine Gewinnmarke enthält. Aufgrund von Kundenäußerungen vermutet der Filialleiter eines Getränkemarkts jedoch, dass der Anteil der Saftschorle-Flaschen mit einer Gewinnmarke im Verschluss nun geringer als 0,05 ist, und beschwert sich beim Getränkehersteller.

    Der Getränkehersteller bietet ihm an, anhand von 200 zufällig ausgewählten Flaschen einen Signifikanztest für die Nullhypothese „Die Wahrscheinlichkeit dafür, in einer Flasche eine Gewinnmarke zu finden, beträgt mindestens 0,05." auf einem Signifikanzniveau von 1 % durchzuführen. Für den Fall, dass das Ergebnis des Tests im Ablehnungsbereich der Nullhypothese liegt, verspricht der Getränkehersteller, seine Abfüllanlage zu überprüfen und die Kosten für eine Sonderwerbeaktion des Getränkemarkts zu übernehmen.

    Ermitteln Sie den Ablehnungsbereich der Nullhypothese und bestimmen Sie anschließend unter der Annahme, dass im Mittel nur 3 % der Saftschorle-Flaschen eine Gewinnmarke enthalten, die Wahrscheinlichkeit dafür, dass der Getränkemarkt nicht in den Genuss einer kostenlosen Sonderwerbeaktion kommt.

    (7 BE)

  • Im Folgenden gilt beim Öffnen einer Flasche steht \(P(A) = 0{,}05\) und \(P(B) = 0{,}044\).

    Es werden nacheinander zehn Flaschen geöffnet. Berechnen Sie die Wahrscheinlichkeit dafür, dass sich erstmals in der fünften Flasche eine Gewinnmarke befindet. 

    (2 BE)