Stochastik 1

  • Ein Glücksrad hat drei Sektoren, einen blauen, einen gelben und einen roten. Diese sind unterschiedlich groß. Die Wahrscheinlichkeit dafür, dass beim einmaligen Drehen der blaue Sektor getroffen wird, beträgt \(p\).

    Interpretieren Sie den Term \((1 - p)^{7}\) im Sachzusammenhang.

    ((2 BE)

  • Das Glücksrad wird zehnmal gedreht. Geben Sie einen Term an, mit dem die Wahrscheinlichkeit dafür berechnet werden kann, dass der blaue Sektor genau zweimal getroffen wird.

    (1 BE)

  • Die Wahrscheinlichkeit dafür, dass beim einmaligen Drehen der gelbe Sektor getroffen wird, beträgt 50 %. Felix hat 100 Drehungen des Glücksrads beobachtet und festgestellt, dass bei diesen der Anteil der Drehungen, bei denen der gelbe Sektor getroffen wurde, deutlich geringer als 50 % war. Er folgert: „Der Anteil der Drehungen, bei denen der gelbe Sektor getroffen wird, muss also bei den nächsten 100 Drehungen deutlich größer als 50 % sein." Beurteilen Sie die Aussage von Felix.

    (2 BE)

  • Das Glücksrad wird viermal gedreht und die Abfolge der Farben als Ergebnis notiert. Bestimmen Sie die Anzahl der möglichen Ergebnisse, in denen die Farbe Blau nicht vorkommt.

    (2 BE)

  • In der Abbildung ist die Wahrscheinlichkeitsverteilung einer Zufallsgröße \(X\) mit der Wertemenge \(\{0;1;2;3;4\}\) und dem Erwartungswert \(2\) dargestellt. Weisen Sie nach, dass es sich dabei nicht um eine Binomialverteilung handeln kann.

    Abbildung Teilaufgabe 2 Stochastik 1 Mathematik Abitur Bayern 2017 A

     

    (3 BE)

  • Das elektronische Stabilitätsprogramm (ESP) eines Autos kann Schleuderbewegungen und damit Unfälle verhindern.

    Gehen Sie bei den folgenden Aufgaben davon aus, dass 40 % aller Autos mit ESP ausgerüstet sind.

    200 Autos werden nacheinander zufällig ausgewählt; die Zufallsgröße \(X\) beschreibt die Anzahl der ausgewählten Autos mit ESP.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass von den ausgewählten Autos mindestens 70 mit ESP ausgerüstet sind.

    (3 BE)

  • Bestimmen Sie die Wahrscheinlichkeiten folgender Ereignisse.

    \(A\): „Das fünfte ausgewählte Auto ist das erste mit ESP."

    \(B\): „Die Zufallsgröße \(X\) nimmt einen Wert an, der von ihrem Erwartungswert höchstens um eine Standardabweichung abweicht."

    (7 BE)

  • In einem Parkhaus befinden sich insgesamt 100 Parkplätze.

    Im Parkhaus sind 20 Parkplätze frei; vier Autofahrer suchen jeweils einen Parkplatz. Formulieren Sie in diesem Sachzusammenhang zu den folgenden Termen jeweils eine Aufgabenstellung, deren Lösung sich durch den Term berechnen lässt.

    \[\sf{α)} \; 20 \cdot 19 \cdot 18 \cdot 17 \qquad \qquad \sf{β)} \; \binom{20}{4}\]

    (3 BE)

  • Das Parkhaus ist nun mit 100 Autos besetzt, von denen 40 mit ESP ausgerüstet sind.

    Sieben von diesen 100 Autos sind Kleinwagen und nicht mit ESP ausgerüstet, 90 sind keine Kleinwagen. Betrachtet werden folgende Ereignisse.

    \(E\): „Ein im Parkhaus zufällig ausgewähltes Auto ist mit ESP ausgerüstet."

    \(K\): „Bei einem im Parkhaus zufällig ausgewählten Auto handelt es sich um einen Kleinwagen."

    Geben Sie die Bedeutung von \(P_{K}(E)\) im Sachzusammenhang an und ermitteln Sie diese Wahrscheinlichkeit.

    (3 BE)

  • 30 der im Parkhaus stehenden Autos werden zufällig ausgewählt. Bestimmen Sie die Wahrscheinlichkeit dafür, dass darunter genau 40 % mit ESP ausgerüstet sind.

    (4 BE)

  • In Sonnenstadt gibt es 6000 Einfamilienhäuser, von denen 2400 mit einer Holzpelletheizung ausgestattet sind. Bei zwei Drittel der Einfamilienhäuser mit Holzpelletheizung ist diese mit einer solarthermischen Anlage kombiniert. 50 % aller Einfamilienhäuser sind weder mit einer Holzpelletheizung noch mit einer solarthermischen Anlage ausgestattet.

    Stellen Sie zu der beschriebenen Situation eine vollständig ausgefüllte Vierfeldertafel auf

    (3 BE)

  • Ein zufällig ausgewähltes Einfamilienhaus ist mit einer solarthermischen Anlage ausgestattet. Mit welcher Wahrscheinlichkeit hat es eine Holzpelletheizung?

    (2 BE)

  • Das abgebildete Baumdiagramm stellt ein zweistufiges Zufallsexperiment mit den Ereignissen \(A\) und \(B\) sowie deren Gegenereignissen \(\overline{A}\) und \(\overline{B}\) dar.

    Abbildung Aufgabe 2a Stochastik 1 Mathematik Abitur Bayern 2018 A

    Bestimmen Sie den Wert von \(p\) so, dass das Ereignis \(B\) bei diesem Zufallsexperiment mit der Wahrscheinlichkeit \(0,3\) eintritt.

    (2 BE)

  • Ermitteln Sie den größtmöglichen Wert, den die Wahrscheinlichkeit von \(B\) annehmen kann.

    (3 BE)

  • Auf einem Abschnitt einer wenig befahrenen Landstraße ist eine Höchstgeschwindigkeit von 80 km/h zugelassen. An einer Stelle dieses Abschnitts wird die Geschwindigkeit vorbeifahrender Pkw gemessen. Im Folgenden werden vereinfachend nur solche Fahrten betrachtet, bei denen die Fahrer die Geschwindigkeit unabhängig voneinander wählen konnten.

    Für die ersten 200 erfassten Fahrten ergab sich nach Einteilung in Geschwindigkeitsklassen die folgende Verteilung:

    Abbildung Stochastik 1 Mathematik Abitur Bayern 2018 B

    Bei 62 % der 200 Fahrten war der Fahrer allein unterwegs, 65 dieser Alleinfahrer fuhren zu schnell. Aus den 200 Fahrten wird eine zufällig ausgewählt. Es werden folgende Ereignisse betrachtet:

    \(A\):  „Der Fahrer war allein unterwegs."

    \(S\):  „Der Pkw war zu schnell."

    Weisen Sie nach, dass die Ereignisse \(A\) und \(S\) stochastisch abhängig sind, und geben Sie hierfür einen möglichen Grund im Sachzusammenhang an.

    (5 BE)

  • Die Geschwindigkeitsmessungen werden über einen längeren Zeitraum fortgesetzt. Dabei zeigt sich, dass die Verteilung der auf km/h genau gemessenen Geschwindigkeiten näherungsweise durch eine Binomialverteilung mit den Parametern \(n = 100\) und \(p = 0{,}8\) beschrieben werden kann. Beispielsweise entspricht \(B(100; 0{,}8; 77)\) näherungsweise dem Anteil der mit einer Geschwindigkeit von 77 km/h erfassten Pkw.

    Bestätigen Sie exemplarisch für eine der beiden mittleren Geschwindigkeitsklassen der oben dargestellten Stichprobe, dass die ermittelte Anzahl der Fahrten mit der Beschreibung durch die Binomialverteilung im Einklang steht.

    (4 BE)

  • Bestimmen Sie unter Verwendung dieser Binomialverteilung die kleinste Geschwindigkeit \(v^{*}\), für die die folgende Aussage zutrifft: „Bei mehr als 95 % der erfassten Fahrten wird \(v^{*}\) nicht überschritten."

    (2 BE)

  • Die Polizei führt an der Messstelle eine Geschwindigkeitskontrolle durch. Bei einer Geschwindigkeit von mehr als 83 km/h liegt ein Tempoverstoß vor. Vereinfachend soll davon ausgegangen werden, dass die Geschwindigkeit eines vorbeifahrenden Pkw mit einer Wahrscheinlichkeit von 19 % größer als 83 km/h ist.

    Berechnen Sie die Anzahl der Geschwindigkeitsmessungen, die mindestens durchgeführt werden müssen, damit mit einer Wahrscheinlichkeit von mehr als 99 % mindestens ein Tempoverstoß erfasst wird.

    (4 BE)

  • Liegt in einer Stichprobe von 50 Geschwindigkeitsmessungen die Zahl der Tempoverstöße um mehr als eine Standardabweichung unter dem Erwartungswert, geht die Polizei davon aus, dass wirksam vor der Geschwindigkeitskontrolle gewarnt wurde, und bricht die Kontrolle ab. Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Geschwindigkeitskontrolle fortgeführt wird, obwohl die Wahrscheinlichkeit dafür, dass ein Tempoverstoß begangen wird, auf 10 % gesunken ist.

    (5 BE)

  • Ein Glücksrad besteht aus fünf gleich großen Sektoren. Einer der Sektoren ist mit „0" beschriftet, einer mit „1" und einer mit „2"; die beiden anderen Sektoren sind mit „9" beschriftet.

    Das Glücksrad wird viermal gedreht. Berechnen Sie die Wahrscheinlichkeit dafür, dass die Zahlen 2, 0, 1 und 9 in der angegebenen erzielt werden.

    (2 BE)