Stochastik 1

  • Gegeben ist die Zufallsgröße \(X\) mit der Wertemenge \(\{0;1;2;3;4;5\}\). Die Wahrscheinlichkeitsverteilung von \(X\) ist symmetrisch, d. h. es gilt \(P(X = 0) = P(X = 5)\), \(P(X = 1) = P(X = 4)\), \(P(X = 2) = P(X = 3)\).

    Die Tabelle zeigt die Wahrscheinlichkeitswerte \(P(X \leq k)\) für \(k \in \{0; 1; 2\}\).

    Tabelle Aufgabe a,b Stochastik 1 Prüfungsteil A Mathematik Abitur Bayern 2021

    Tragen Sie die fehlenden Werte in die Tabelle ein.

    (2 BE)

  • Begründen Sie, dass \(X\) nicht binomialverteilt ist.

    (3 BE)

  • An einem Samstagvormittag kommen nacheinander vier Familien zum Eingangsbereich eines Freizeitparks. Jede der vier Familien bezahlt an einer der sechs Kassen, wobei davon ausgegangen werden soll, dass jede Kasse mit der gleichen Wahrscheinlichkeit gewählt wird. Beschreiben Sie im Sachzusammenhang zwei Ereignisse \(A\) und \(B\), deren Wahrscheinlichkeiten sich mit den folgenden Termen berechnen lassen:

    \[P(A) = \frac{6 \cdot 5 \cdot 4 \cdot 3}{6^{4}}; \enspace P(B) = \frac{6}{6^{4}}\]

    (3 BE)

  • Im Eingangsbereich des Freizeitparks können Bollerwagen ausgeliehen werden. Erfahrungsgemäß nutzen 15 % der Familien dieses Angebot. Die Zufallsgröße \(X\) beschreibt die Anzahl der Bollerwagen, die von den ersten 200 Familien, die an einem Tag den Freizeitpark betreten, entliehen werden. Im Folgenden wird davon ausgegangen, dass eine Familie höchstens einen Bollerwagen ausleiht und dass die Zufallsgröße \(X\) binomialverteilt ist.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass mindestens 25 Bollerwaagen ausgeliehen werden. 

    (2 BE)

  • Bestimmen Sie die Wahrscheinlichkeit dafür, dass die fünfte Familie die erste ist, die einen Bollerwagen ausleiht.

    (2 BE)

  • Ermitteln Sie unter Zuhilfenahme des Tafelwerks den kleinsten symmetrischen um den Erwartungswert liegenden Bereich, in dem die Werte der Zufallsgröße \(X\) mit einer Wahrscheinlichkeit von mindestens 75 % liegen.

    (5 BE)

  • Abbildung Aufgabe 3 Stochastik 1 Prüfungsteil B Mathematik Abitur Bayern 2021

    Der Freizeitpark veranstaltet ein Glücksspiel, bei dem Eintrittskarten für den Freizeitpark gewonnen werden können. Zu Beginn des Spiels wirft man einen Würfel, dessen Seiten mit den Zahlen 1 bis 6 durchnummeriert sind. Erzielt man dabei die Zahl 6, darf man anschließend einmal an einem Glücksrad mit drei Sektoren drehen (vgl. schematische Abbildung). Wird Sektor K erzielt, gewinnt man eine Kinderkarte im Wert von 28 Euro, bei Sektor E eine Erwachsenenkarte im Wert von 36 Euro. Bei Sektor N geht man leer aus. Der Mittelpunktswinkel des Sektors N beträgt 160°. Die Größen der Sektoren K und E sind so gewählt, dass pro Spiel der Gewinn im Mittel drei Euro beträgt. Bestimmen Sie die Größe der Mittelpunktswinkel der Sektoren K und E.

    (6 BE)

  • Am Ausgang des Freizeitparks gibt es einen Automaten, der auf Knopfdruck einen Anstecker mit einem lustigen Motiv bedruckt und anschließend ausgibt. Für den Druck wird aus \(n\) verschiedenen Motiven eines zufällig ausgewählt, wobei jedes Motiv die gleiche Wahrscheinlichkeit hat.

    Ein Kind holt sich drei Anstecker aus dem Automaten.

    Bestimmen Sie für den Fall \(n = 5\) die Wahrscheinlichkeit dafür, dass nicht alle drei Anstecker dasselbe Motiv haben.

    (2 BE)

  • Begründen Sie, dass die Wahrscheinlichkeit dafür, dass sich drei verschiedene Motive auf den Ansteckern befinden, den Wert \(\dfrac{(n - 1) \cdot (n - 2)}{n^{2}}\) hat.

    (2 BE)

  • Bestimmen Sie, wie groß \(n\) mindestens sein muss, damit die Wahrscheinlichkeit dafür, dass sich drei verschiedene Motive auf den Ansteckern befinden, größer als 90 % ist.

     (3 BE)

  • Gegeben sind die im Folgenden beschriebenen Zufallsgrößen \(X\) und \(Y\):

    • Ein Würfel, dessen Seiten mit den Zahlen von 1 bis 6 durchnummeriert sind, wird zweimal geworfen. \(X\) gibt die dabei erzielte Augensumme an.
    • Aus einem Behälter mit 60 schwarzen und 40 weißen Kugeln wird zwölfmal nacheinander jeweils eine Kugel zufällig entnommen und wieder zurückgelegt. \(Y\) gibt die Anzahl der entnommenen schwarzen Kugeln an.

    Begründen Sie, dass die Wahrscheinlichkeit \(P(X = 4)\) mit der Wahrscheinlichkeit \(P(X = 10)\) übereinstimmt.

    (2 BE)

  • Die Wahrscheinlichkeitsverteilungen von \(X\) und \(Y\) werden jeweils durch eines der folgenden Diagramme I, II und III dargestellt. Ordnen Sie \(X\) und \(Y\) jeweils dem passenden Diagramm zu und begründen Sie Ihre Zuordnung.

    Diagramm I Stochastik 1 Prüfungsteil A Mathematik Abitur Bayern 2022

    Diagramm II Stochastik 1 Prüfungsteil A Mathematik Abitur Bayern 2022

    Diagramm III Stochastik 1 Prüfungsteil A Mathematik Abitur Bayern 2022

    (3 BE)

  • Um die Wirksamkeit eines Pflanzenschutzmittels gegen Pilzbefall nachzuweisen, wurden zahlreiche Versuche durchgeführt, bei denen landwirtschaftliche Nutzpflanzen zunächst mit dem Pflanzenschutzmittel behandelt und anschließend mit Pilzsporen besprüht wurden. Im Mittel sind dabei 5 % der Pflanzen von Pilzen befallen worden.

    Bei einem weiteren solchen Versuch mit \(n\) Pflanzen beschreibt die Zufallsgröße \(X_n\) die Anzahl der Pflanzen, die von Pilzen befallen werden. Im Folgenden soll davon ausgegangen werden, dass \(X_n\) binomialverteilt ist mit den Parametern \(n\) und \(p = 0{,}05\).

    Es werden 15 Pflanzen mit dem Pflanzenschutzmittel behandelt und anschließend mit Pilzsporen besprüht. Bestimmen Sie jeweils die Wahrscheinlichkeit folgender Ereignisse:

    \(E_1\): „Keine der Pflanzen wird von Pilzen befallen."

    \(E_2\): „Höchstens zwei Pflanzen werden von Pilzen befallen."

    \(E_3\): „12 oder 13 Pflanzen bleiben ohne Pilzbefall."

    (6 BE)

  • Bestimmen Sie den kleinsten Wert von \(n\), für den die Wahrscheinlichkeit dafür, dass mindestens eine Pflanze von Pilzen befallen wird, mindestens 99 % beträgt.

    (4 BE)

  • Ermitteln Sie unter der Voraussetzung, dass bei einem Versuch mit 400 Pflanzen der Wert der Zufallsgröße \(X_{400}\) um höchstens eine Standardabweichung vom Erwartungswert abweicht, die kleinst- und die größtmögliche relative Häufigkeit der Pflanzen, die von Pilzen befallen werden.

    (4 BE)

  • Allgemein gilt für eine Zufallsgröße \(X\) mit Erwartungswert \(\mu\) und Standardabweichung \(\sigma\) folgende Ungleichung für \(k > 0\):

    \[P(\mu - k \cdot \sigma < X < \mu + k \cdot \sigma) \geq 1 - \frac{1}{k^2}\]

    Erläutern Sie die Aussage dieser Ungleichung für \(k = 2\).

    (3 BE)

  • Um die Wirksamkeit des Pflanzenschutzmittels gegen einen nur in den Tropen auftretenden Pilz zu untersuchen, wurde ein Experiment mit 150 Pflanzen durchgeführt. Dabei wurden 70 % der Pflanzen mit dem Pflanzenschutzmittel behandelt und anschließend alle 150 Pflanzen mit den Sporen des tropischen Pilzes besprüht.

    Am Ende des Experiments war die Anzahl der unbehandelten Pflanzen ohne Pilzbefall dreimal so groß wie die Anzahl \(x\) der behandelten Pflanzen mit Pilzbefall. Insgesamt wurden 19 Pflanzen vom tropischen Pilz befallen.

    Aus den 150 Pflanzen wird eine Pflanze zufällig ausgewählt. Betrachtet werden folgende Ereignisse:

    \(S\): „Die Pflanze wurde mit dem Pflanzenschutzmittel behandelt."

    \(T\): „Die Pflanze wurde vom tropischen Pilz befallen."

    Bestimmen Sie \(\boldsymbol{x}\) unter Zuhilfenahme einer Vierfeldertafel.

    (zur Kontrolle: \(x = 13\))

    (4 BE)

  • Berechnen Sie \(P_S(T)\) und \(P_\overline{S}(T)\) und begründen Sie, dass aus den Ergebnissen des Experiments nicht auf die Wirksamkeit des Pflanzenschutzmittels gegen den tropischen Pilz geschlossen werden kann.

    (4 BE)

  • Die vier Seiten eines regelmäßigen Tetraeders sind mit den Zahlen 1, 2, 3 und 4 durchnummeriert. Das Tetraeder wird fünfmal geworfen.

    Geben Sie im Sachzusammenhang ein Ereignis an, dessen Wahrscheinlichkeit mit dem Term \(\left( \dfrac{3}{4} \right)^5\) berechnet werden kann, und begründen Sie Ihre Angabe. 

    (2 BE) 

  • Geben Sie einen Term an, mit dem die Wahrscheinlichkeit dafür berechnet werden kann, dass jede Zahl mindestens einmal erzielt wird.

    (3 BE)