Stochastik 2

  • Der Supermarkt muss für jede Eintrittskarte nur zehn Euro an den Freizeitpark bezahlen. Damit ist bei der Spielaktion ein finanzieller Überschuss zu erwarten, der an den örtlichen Kindergarten gespendet werden soll. Ermitteln Sie den zu erwartenden Überschuss, wenn man davon ausgeht, dass das Spiel insgesamt 6000-mal durchgeführt wird.

    (3 BE)

  • In einer Urne befinden sich vier rote und sechs blaue Kugeln. Aus dieser wird achtmal eine Kugel zufällig gezogen, die Farbe notiert und die Kugel anschließend wieder zurückgelegt.

    Geben Sie einen Term an, mit dem die Wahrscheinlichkeit des Ereignisses „Es werden gleich viele rote und blaue Kugeln gezogen." berechnet werden kann. 

    (2 BE)

  • Beschreiben Sie im Sachzusammenhang jeweils ein Ereignis, dessen Wahrscheinlichkeit durch den angegebenen Term berechnet werden kann.

    α) \(\displaystyle 1 - \left( \frac{3}{5} \right)^{8}\)

    β) \(\displaystyle \left( \frac{3}{5} \right)^{8} + 8 \cdot \frac{2}{5} \cdot \left( \frac{3}{5} \right)^{7}\)

    (3 BE)

  • Für ein Zufallsexperiment wird eine Zufallsgröße \(X\) festgelegt, welche die drei Werte -2, 1 und 2 annehmen kann. In der Abbildung ist die Wahrscheinlichkeitsverteilung von \(X\) dargestellt.

    Ermitteln Sie mithilfe der Abbildung den Erwartungswert der Zufallsgröße \(X\).

    Abbildung zu Teilaufgabe 2 Stochastik 2 Prüfungsteil A Mathematik Abitur Bayern 2015

     

    (2 BE)

  • Das Zufallsexperiment wird zweimal durchgeführt. Dabei wird jeweils der Wert der Zufallsgröße \(X\) notiert. Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Summe dieser beiden Werte negativ ist. 

    (3 BE)

  • Die beiden Diagramme zeigen für die Bevölkerungsgruppe der über 14-jährigen in Deutschland Daten zur Altersstruktur und zum Besitz von Mobiltelefonen.

    Diagramme zu Teilaufgabe 1 Stochastik 1 Prüfungsteil B Mathematik Abitur Bayern 2015

    Aus den über 14-jährigen in Deutschland wird eine Person zufällig ausgewählt. Betrachtet werden folgende Ereignisse:

    \(M\): „Die Person besitzt ein Mobiltelefon."

    \(S\): „Die Person ist 65 Jahre oder älter."

    \(E\): „Mindestens eines der Ereignisse \(M\) und \(S\) tritt ein."

    Geben Sie an, welche zwei der folgenden Mengen I bis VI jeweils das Ereignis \(E\) beschreiben.

    \[\textsf{I}\enspace \, \quad M \cap S\]

    \[\textsf{II} \;\, \quad M \cup S\]

    \[\textsf{III} \quad \overline{M \cup S}\]

    \[\textsf{IV} \quad (M \cap \overline{S}) \cup (\overline{M} \cap S) \cup (\overline{M} \cap \overline{S})\]

    \[\textsf{V} \; \quad (M \cap S) \cup (M \cap \overline{S}) \cup (\overline{M} \cap S)\]

    \[\textsf{VI} \quad \overline{M \cap S}\]

     

    (2 BE)

  • Entscheiden Sie anhand geeigneter Terme und auf der Grundlage der vorliegenden Daten, welche der beiden folgenden Wahrscheinlichkeiten größer ist. Begründen Sie Ihre Entscheidung.

    \(p_{1}\) ist die Wahrscheinlichkeit dafür, dass die ausgewählte Person ein Mobiltelefon besitzt, wenn bekannt ist, dass sie 65 Jahre oder älter ist.

    \(p_{2}\) ist die Wahrscheinlichkeit dafür, dass die ausgewählte Person 65 Jahre oder älter ist, wenn bekannt ist, dass sie ein Mobiltelefon besitzt.

    (3 BE)

  • Erstellen Sie zu dem beschriebenen Sachverhalt für den Fall, dass das Ereignis \(E\) mit einer Wahrscheinlichkeit von 98 % eintritt, eine vollständig ausgefüllte Vierfeldertafel. Bestimmen Sie für diesen Fall die Wahrscheinlichkeit \(P_{S}(M)\).

    (5 BE)

  • Eine Handelskette hat noch zahlreiche Smartphones des Modells Y3 auf Lager, als der Hersteller das Nachfolgemodell Y4 auf den Markt bringt. Der Einkaufspreis für das neue Y4 beträgt 300 €, während die Handelskette für das Vorgängermodell Y3 im Einkauf nur 250 € bezahlen musste. Um die Lagerbestände noch zu verkaufen, bietet die Handelskette ab dem Verkaufsstart des Y4 die Smartphones des Typs Y3 für je 199 € an.

    Aufgrund früherer Erfahrungen geht die Handelskette davon aus, dass von den verkauften Smartphones der Modelle Y3 und Y4 trotz des Preisnachlasses nur 26 % vom Typ Y3 sein werden. Berechnen Sie unter dieser Voraussetzung, zu welchem Preis die Handelskette das Y4 anbieten muss, damit sie voraussichtlich pro verkauftem Smartphone der Modelle Y3 und Y4 im Mittel 97 € mehr erhält, als sie beim Einkauf dafür zahlen musste.

    (4 BE)

  • Zwei Drittel der Senioren in Deutschland besitzen ein Mobiltelefon. Bei einer Talkshow zum Thema „Chancen und Risiken der digitalen Welt" sitzen 30 Senioren im Publikum.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass unter 30 zufällig ausgewählten Senioren in Deutschland mindestens 17 und höchstens 23 ein Mobiltelefon besitzen.

    (3 BE)

  • Von den 30 Senioren im Publikum besitzen 24 ein Mobiltelefon. Im Verlauf der Sendung werden drei der Senioren aus dem Publikum zufällig ausgewählt und nach ihrer Meinung befragt. Bestimmen Sie die Wahrscheinlichkeit dafür, dass genau zwei der drei Senioren ein Mobiltelefon besitzen.

    (3 BE)

  • Beschreiben Sie im Sachzusammenhang ein Ereignis, dessen Wahrscheinlichkeit durch den folgenden Term berechnet werden kann.

    \[\dfrac{\displaystyle \binom{14}{4} - \binom{6}{4}}{\displaystyle \binom{14}{4}}\]

    (2 BE)

  • An einem P-Seminar nehmen acht Mädchen und sechs Jungen teil, darunter Anna und Tobias. Für eine Präsentation wird per Los aus den Teilnehmerinnen und Teilnehmern ein Team aus vier Personen zusammengestellt.

    Geben Sie zu jedem der folgenden Ereignisse einen Term an, mit dem die Wahrscheinlichkeit des Ereignisses berechnet werden kann.

    \(A\): „Anna und Tobias gehören dem Team an."

    \(B\): „Das Team besteht aus gleich vielen Mädchen und Jungen."

    (3 BE)

  • Die Zufallsgröße \(X\) ordnet jedem Ergebnis die Anzahl der entsprechenden Münzwürfe zu. Berechnen Sie den Erwartungswert von \(X\).

    (3 BE)

  • Bei einem Zufallsexperiment wird eine ideale Münze so lange geworfen, bis zum zweiten Mal Zahl \((Z)\) oder zum zweiten Mal Wappen \((W)\) oben liegt. Als Ergebnismenge wird festgelegt: \(\{ZZ; WW; ZWZ; ZWW; WZZ; WZW\}\).

    Begründen Sie, dass dieses Zufallsexperiment kein Laplace-Experiment ist.

    (2 BE)

  • Nach einem Bericht zur Allergieforschung aus dem Jahr 2008 litt damals in Deutschland jeder vierte bis fünfte Einwohner an einer Allergie. 41 % aller Allergiker reagierten allergisch auf Tierhaare.

    Kann aus diesen Aussagen gefolgert werden, dass 2008 mindestens 10 % der Einwohner Deutschlands auf Tierhaare allergisch reagierten? Begründen Sie Ihre Antwort.

    (3 BE)

  • Ein Pharmaunternehmen hat einen Hauttest zum Nachweis einer Tierhaarallergie entwickelt. Im Rahmen einer klinischen Studie zeigt sich, dass der Hauttest bei einer aus der Bevölkerung Deutschlands zufällig ausgewählten Person mit einer Wahrscheinlichkeit von 39,5 % ein positives Testergebnis liefert. Leidet eine Person an einer Tierhaarallergie, so ist das Testergebnis mit einer Wahrscheinlichkeit von 85 % positiv. Das Testergebnis ist jedoch bei einer Person, die nicht an einer Tierhaarallergie leidet, mit einer Wahrscheinlichkeit von 35 % ebenfalls positiv.

    Ermitteln Sie, welcher Anteil der Bevölkerung Deutschlands demnach allergisch auf Tierhaare reagiert.

    (Ergebnis: 9 %)

    (4 BE)

  • Eine aus der Bevölkerung Deutschlands zufällig ausgewählte Person wird getestet; das Testergebnis ist positiv. Berechnen Sie die Wahrscheinlichkeit dafür, dass diese Person tatsächlich an einer Tierhaarallergie leidet.

    (2 BE)

  • Nach einer aktuellen Erhebung leiden 25 % der Einwohner Deutschlands an einer Allergie. Aus den Einwohnern Deutschlands werden \(n\) Personen zufällig ausgewählt.

    Bestimmen Sie, wie groß \(n\) mindestens sein muss, damit mit einer Wahrscheinlichkeit von mehr als 99 % mindestens eine der ausgewählten Personen an einer Allergie leidet.

    (4 BE)

  • Im Folgenden ist \(n = 200\). Die Zufallsgröße \(X\) beschreibt die Anzahl der Personen unter den ausgewählten Personen, die an einer Allergie leiden. Bestimmen Sie die Wahrscheinlichkeit dafür, dass der Wert der binomialverteilten Zufallsgröße \(X\) höchstens um eine Standardabweichung von ihrem Erwartungswert abweicht.

    (5 BE)