Stochastik 2

  • Ein Glücksrad besteht aus fünf gleich großen Sektoren. Einer der Sektoren ist mit „0" beschriftet, einer mit „1" und einer mit „2"; die beiden anderen Sektoren sind mit „9" beschriftet.

    Das Glücksrad wird viermal gedreht. Berechnen Sie die Wahrscheinlichkeit dafür, dass die Zahlen 2, 0, 1 und 9 in der angegebenen erzielt werden.

    (2 BE)

  • Das Glücksrad wird zweimal gedreht. Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Summe der erzielten Zahlen mindestens 11 beträgt.

    (3 BE)

  • Gegeben ist eine binomialverteilte Zufallsgröße \(X\) mit dem Parameterwert \(n = 5\). Dem Diagramm in Abbildung 1 kann man die Wahrscheinlichkeitswerte \(P(X \leq k)\) mit \(k \in \{0; 1; 2; 3; 4\}\) entnehmen.

    Ergänzen Sie den zu \(k = 5\) gehörenden Wahrscheinlichkeitswert im Diagramm. Ermitteln Sie näherungsweise die Wahrscheinlichkeit \(P(X = 2)\).

    Abb. 1Abbildung 1 Aufgabe 2 Stochastik 2 Mathematik Abitur Bayern 2019 A

    (2 BE)

  • Das Baumdiagramm in Abbildung 2 gehört zu einem Zufallsexperiment mit den stochastisch unabhängigen Ereignissen \(A\) und \(B\). Bestimmen Sie die Wahrscheinlichkeit des Ereignisses \(B\).

    Abbildung 2 Aufgabe 3 Stochastik 2 Mathematik Abitur Bayern 2019 AAbb. 2

     

    (3 BE)

  • Jeder sechste Besucher eines Volksfests trägt ein Lebkuchenherz um den Hals. Während der Dauer des Volksfests wird 25-mal ein Besucher zufällig ausgewählt. Die Zufallsgröße \(X\) beschreibt die Anzahl der ausgewählten Besucher, die ein Lebkuchenherz tragen.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass unter den ausgewählten Besuchern höchstens ein Besucher ein Lebkuchenherz trägt.

    (2 BE)

  • Beschreiben Sie im Sachzusammenhang ein Ereignis, dessen Wahrscheinlichkeit mit dem Term \(\sum \limits_{i\,=\,5}^{8}B\left( 25;\frac{1}{6};i \right)\) berechnet werden kann.

    (2 BE)

  • Bestimmen Sie die Wahrscheinlichkeit dafür, dass der Wert der Zufallsgröße \(X\) höchstens um eine Standardabweichung vom Erwartungswert der Zufallsgröße abweicht.

    (4 BE)

  • Bei einer Losbude wird damit geworben, dass jedes Los gewinnt. Die Lose und die zugehörigen Sachpreise können drei Kategorien zugeordnet werden, die mit „Donau", „Main" und „Lech" bezeichnet werden. Im Lostopf befinden sich viermal so viele Lose der Kategorie „Main" wie Lose der Kategorie „Donau". Ein Los kostet 1 Euro. Die Inhaberin der Losbude bezahlt im Einkauf für einen Sachpreis in der Kategorie „Donau" 8 Euro, in der Kategorie „Main" 2 Euro und in der Kategorie „Lech" 20 Cent. Ermitteln Sie, wie groß der Anteil der Lose der Kategorie „Donau" sein muss, wenn die Inhaberin im Mittel einen Gewinn von 35 Cent pro Los erzielen will.

    (5 BE)

  • Die Inhaberin der Losbude beschäftigt einen Angestellten, der Besucher des Volksfests anspricht, um diese zum Kauf von Losen zu animieren. Sie ist mit der Erfolgsquote des Angestellten unzufrieden.

    Die Inhaberin möchte dem Angestellten das Gehalt kürzen, wenn weniger als 15 % der angesprochenen Besucher Lose kaufen. Die Entscheidung über die Gehaltskürzung soll mithilfe eines Signifikanztests auf der Grundlage von 100 angesprochenen Besuchern getroffen werden. Dabei soll möglichst vermieden werden, dem Angestellten das Gehalt zu Unrecht zu kürzen. Geben Sie die entsprechende Nullhypothese an und ermitteln Sie die zugehörige Entscheidungsregel auf dem Signifikanzniveau von 10 %.

    (5 BE)

  • Der Angestellte konnte bei der Durchführung des Tests zehn von 100 erwachsenen Besuchern dazu animieren, Lose zu kaufen. Er behauptet, dass er zumindest bei Personen mit Kind eine Erfolgsquote größer als 10 % habe. Unter den 100 angesprochenen Besuchern befanden sich 40 Personen mit Kind. Von den Personen ohne Kind zogen 54 kein Los. Überprüfen Sie, ob das Ergebnis der Stichprobe die Behauptung des Angestellten stützt.

    (2 BE)

  • Ein Glücksrad besteht aus zwei unterschiedlich großen Sektoren. Der größere Sektor ist mit der Zahl 1 und der kleinere mit der Zahl 3 beschriftet. Die Wahrscheinlichkeit dafür, beim einmaligen Drehen des Glücksrads die Zahl 1 zu erzielen, wird mit \(p\) bezeichnet. Das Glücksrad wird zweimal gedreht.

    Begründen Sie, dass die Wahrscheinlichkeit dafür, dass die Summe der beiden erzielten Zahlen 4 ist, durch den Term \(2p \cdot (1- p)\) angegeben wird.

    (1 BE)

  • Die Zufallsgröße \(X\) beschreibt die Summe der beiden erzielten Zahlen. Bestimmen Sie, für welchen Wert von \(p\) die Zufallsgröße \(X\) den Erwartungswert 3 hat.

    (4 BE)

  • Das Laplace-Gymnasium veranstaltet auf dem Sportplatz ein Fußballturnier für die neuen 5. Klassen.

    An dem Turnier nehmen neun Mannschaften teil. Die Mannschaften bestehen jeweils aus Jungen und Mädchen, wobei zwei Drittel aller mitspielenden Kinder männlich sind.

    Die drei Spielführerinnen und die sechs Spielführer der Fußballmannschaften stellen sich in einer Reihe für ein Foto auf. Bestimmen Sie die Anzahl der Möglichkeiten für die Aufstellung der neun Kinder, wenn die drei Spielführerinnen nebeneinanderstehen sollen.

    (3 BE)

  • Im Rahmen der Begrüßung durch die Schulleiterin werden aus allen Spielerinnen und Spielern zunächst zehn Kinder ausgelost, die je einen Fußball erhalten sollen. Um die Wahrscheinlichkeit dafür zu berechnen, dass fünf Mädchen und fünf Jungen einen Ball erhalten, verwendet Max den Ansatz

    \(\binom{10}{5} \cdot \left( \frac{2}{3} \right)^{5} \cdot \left( \frac{1}{3} \right)^{5}\).

    Geben Sie an, ob Max dabei vom Modell „Ziehen mit Zurücklegen" oder vom Modell „Ziehen ohne Zurücklegen" ausgeht. Begründen Sie rechnerisch unter Zugrundelegung eines im Sachkontext realistischen Zahlenwerts für die Gesamtzahl der Spielerinnen und Spieler, dass die von Max berechnete Wahrscheinlichkeit nur geringfügig von der tatsächlichen Wahrscheinlichkeit abweicht.

    (5 BE)

  • Neben dem Fußballturnier werden für die Schülerinnen und Schüler auch ein Elfmeterschießen und ein Torwandschießen angeboten.

    Dafür konnten sich Kinder in zwei Listen eintragen. 45 % der Kinder haben sich sowohl für das Torwandschießen als auch für das Elfmeterschießen eingetragen, 15 % haben sich nur für das Elfmeterschießen eingetragen. 90 % der Kinder, die sich für das Torwandschießen eingetragen haben, haben sich auch für das Elfmeterschießen eingetragen. Aus den Kindern wird eines zufällig ausgewählt. Betrachtet werden die folgenden Ereignisse:

    \(T\): „Das Kind hat sich für das Torwandschießen eingetragen."

    \(E\): „das Kind hat sich für das Elfmeterschießen eingetragen."

    Untersuchen Sie die Ereignisse \(T\) und \(E\) auf stochastiche Unabhängigkeit.

    (4 BE)

  • Drücken Sie jedes der beiden folgenden Ereignisse unter Verwendung der Mengenschreibweise durch \(\mathbf{T}\) und \(\mathbf{E}\) aus.

    \(A\): „Das Kind hat sich in keine der Listen eingetragen."

    \(B\): „Das Kind hat sich in genau eine Liste eingetragen."

    (3 BE)

  • Beim Torwandschießen treten zwei Schützen gegeneinander an. Zunächst gibt der eine sechs Schüsse ab, anschließend der andere. Wer dabei mehr Treffer erzielt, hat gewonnen; andernfalls geht das Torwandschießen unentschieden aus.

    Joe trifft beim Torwandschießen bei jedem Schuss mit einer Wahrscheinlichkeit von 20 %, Hans mit einer Wahrscheinlichkeit von 30 %.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass Joe beim Torwandschießen gegen Hans gewinnt, wenn Hans bei seinen sechs Schüssen genau zwei Treffer erzielt hat. Erläutern Sie anhand einer konkreten Spielsituation, dass das dieser Aufgabe zugrunde gelegte mathematische Modell im Allgemeinen nicht der Realität entspricht.

    (4 BE)

  • Beschreiben Sie im Sachzusammenhang ein Ereignis, dessen Wahrscheinlichkeit durch den Term \(\sum \limits_{k\,=\,0}^{6} \left( B(6;0{,}2;k) \cdot B(6;0{,}3;k) \right)\) angegeben wird.

    (2 BE)

  • Lisa erreichte im Training in 90 % aller Fälle bei sechs Schüssen mindestens einen Treffer. Bestimmen Sie die Wahrscheinlichkeit dafür, dass ihr erster Schuss im Wettbewerb ein Treffer ist, wenn man davon ausgeht, dass sich ihre Trefferquote im Vergleich zum Training nicht ändert. Legen Sie Ihrer Berechnung als Modell eine geeignete Bernoullikette zugrunde

    (4 BE)

  • Gegeben ist die Zufallsgröße \(X\) mit der Wertemenge \(\{0;1;2;3;4;5\}\). Die Wahrscheinlichkeitsverteilung von \(X\) ist symmetrisch, d. h. es gilt \(P(X = 0) = P(X = 5)\), \(P(X = 1) = P(X = 4)\), \(P(X = 2) = P(X = 3)\).

    Die Tabelle zeigt die Wahrscheinlichkeitswerte \(P(X \leq k)\) für \(k \in \{0; 1; 2\}\).

    Tabelle Aufgabe a,b Stochastik 1 Prüfungsteil A Mathematik Abitur Bayern 2021

    Tragen Sie die fehlenden Werte in die Tabelle ein.

    (2 BE)