Geometrie 1

  • Die Kante \([AS]\) steht senkrecht auf der Grundfläche \(ABCD\). Der Flächeninhalt der Grundfläche beträgt \(24\sqrt{2}\).

    Ermitteln Sie das Volumen der Pyramide.

    (3 BE)

  • In einem kartesischen Koordinatensystem sind die Ebene \(E \colon x_{1} + x_{3} = 2\), der Punkt \(A\left( 0|\sqrt{2}|2 \right)\) und die Gerade \(\displaystyle g \colon \overrightarrow{X} = \overrightarrow{A} + \lambda \cdot \begin{pmatrix} -1 \\ \sqrt{2} \\ 1 \end{pmatrix}\), \(\lambda \in \mathbb R\), gegeben.

    Beschreiben Sie, welche besondere Lage die Ebene \(E\) im Koordinatensystem hat. Weisen Sie nach, dass die Ebene \(E\) die Gerade \(g\) enthält. Geben Sie die Koordinaten der Schnittpunkte von \(E\) mit der \(x_{1}\)-Achse und mit der \(x_{3}\)-Achse an und veranschaulichen Sie die Lage der Ebene \(E\) sowie den Verlauf der Geraden \(g\) in einem kartesischen Koordinatensystem (vgl. Abbildung).

    Abbildung zu Teilaufgabe a Geometrie 1 Prüfungsteil B Mathematik Abitur Bayern 2015

     

    (6 BE)

  • Die \(x_{1}x_{2}\)-Ebene beschreibt modellhaft eine horizontale Fläche, auf der eine Achterbahn errichtet wurde. Ein gerader Abschnitt der Bahn beginnt im Modell im Punkt \(A\) und verläuft entlang der Geraden \(g\). Der Vektor \(\displaystyle \begin{pmatrix} -1 \\ \sqrt{2} \\ 1 \end{pmatrix}\) beschreibt die Fahrtrichtung auf diesem Abschnitt.

    Berechnen Sie im Modell die Größe des Winkels, unter dem dieser Abschnitt der Achterbahn gegenüber der Horizontalen ansteigt.

    (3 BE)

  • An den betrachteten geraden Abschnitt der Achterbahn schließt sich - in Fahrtrichtung gesehen - eine Rechtskurve an, die im Modell durch einen Viertelkreis beschrieben wird, der in der Ebene \(E\) verläuft und den Mittelpunkt \(M \left( 0|3\sqrt{2}|2 \right)\) hat.

    Das Lot von \(M\) auf \(g\) schneidet \(g\) im Punkt \(B\). Im Modell stellt \(B\) den Punkt der Achterbahn dar, in dem der gerade Abschnitt endet und die Kurve beginnt. Bestimmen Sie die Koordinaten von \(B\) und berechnen Sie den Kurvenradius im Modell.

    (Teilergebnis: \(B\left( -1|2\sqrt{2}|3 \right)\)) 

    (5 BE)

  • Das Ende der Rechtskurve wird im Koordinatensystem durch den Punkt \(C\) beschrieben. Begründen Sie, dass für den Ortsvektor des Punkts \(C\) gilt: \(\overrightarrow{C} = \overrightarrow{M} + \overrightarrow{v}\).

    (2 BE)

  • Ein Wagen der Achterbahn durchfährt den Abschnitt, der im Modell durch die Strecke \([AB]\) und den Viertelkreis von \(B\) nach \(C\) dargestellt wird, mit einer durchschnittlichen Geschwindigkeit von 15 \(\sf{\frac{m}{s}}\). Berechnen Sie die Zeit, die der Wagen dafür benötigt, auf Zehntelsekunden genau, wenn eine Längeneinheit im Koordinatensystem 10 m in der Realität entspricht. 

    (4 BE)

  • Durch die Punkte \(A\) und \(B\) verläuft die Gerade \(g\).

    Betrachtet werden Geraden, für welche die Bedingungen I und II gelten:

    I  Jede dieser Geraden schneidet die Gerade \(g\) orhogonal.

    II Der Abstand jeder dieser Geraden vom Punkt \(A\) beträgt 3.

    Ermitteln Sie eine Gleichung für eine dieser Geraden.

    (3 BE)

  • Gegeben sind die Punkte \(A(-2|1|4)\) und \(B(-4|0|6)\)

    Bestimmen Sie die Koordinaten des Punkts \(C\) so, dass gilt: \(\overrightarrow{CA} = 2 \cdot \overrightarrow{AB}\).

    (2 BE)

  • Der Punkt \(P\) liegt auf der Kante \([FB]\) des Würfels und hat vom Punkt \(H\) den Abstand 3. Berechnen Sie die Koordinaten des Punkts \(P\).

    (3 BE)

  • Betrachtet wird der abgebildete Würfel \(ABCDEFGH\).

    Die Eckpunkte \(D\), \(E\), \(F\) und \(H\) dieses Würfels besitzen in einem kartesischen Koordinatensystem die folgenden Koordinaten: \(D(0|0|-2)\), \(E(2|0|0)\), F(2|2|0) und \(H(0|0|0)\).

    Abbildung zu Teilaufgabe 1 - Geometrie 1 - Prüfungsteil A - Mathematik Abitur Bayern 2016

     

    Zeichnen Sie in die Abbildung die Koordinatenachsen ein und bezeichnen Sie diese. Geben Sie die Koordinaten des Punkts \(A\) an.

    (2 BE)

  • In einem kartesischen Koordinatensystem legen die Punkte \(A(6|3|3)\), \(B(3|6|3)\) und \(C(3|3|6)\) das gleichseitige Dreieck \(ABC\) fest.

    Ermitteln Sie eine Gleichung der Ebenen \(E\), in der das Dreieck \(ABC\) liegt, in Normalenform.

    (mögliches Ergebnis: \(E \colon x_{1} + x_{2} + x_{3} - 12 = 0\))

    (4 BE)

  • Spiegelt man die Punkte \(A\), \(B\) und \(C\) am Symmetriezentrum \(Z(3|3|3)\), so erhält man die Punkte \(A'\), \(B'\) bzw. \(C'\).

    Beschreiben Sie die Lage der Ebene, in der die Punkte \(A\), \(B\) und \(Z\) liegen, im Koordinatensystem. Zeigen Sie, dass die Strecke \([CC']\) senkrecht auf dieser Ebene steht.

    (3 BE)

  • Begründen Sie, dass das Viereck \(ABA'B'\) ein Quadrat mit der Seitenlänge \(3\sqrt{2}\) ist.

    (4 BE)

  • Der Körper \(ABA'B'CC'\) ist ein sogenanntes Oktaeder. Er besteht aus zwei Pyramiden mit dem Quadrat \(ABA'B'\) als gemeinsamer Grundfläche und den Pyramidenspitzen \(C\) bzw. \(C'\).

    Abbildung zu Teilaufgabe d - Geometrie 1 - Prüfungsteil B - Mathematik Abitur Bayern 2016

     

    Weisen Sie nach, dass das Oktaeder das Volumen 36 besitzt.

    (2 BE)

  • Bestimmen Sie die Größe des Winkels zwischen den Seitenflächen \(ABC\) und \(AC'B\).

    (4 BE)

  • Alle Eckpunkte des Oktaeders liegen auf einer Kugel. Geben Sie eine Gleichung dieser Kugel an.

    Berechnen Sie den Anteil des Oktaedervolumens am Kugelvolumen.

    (3 BE)

  • Ermitteln Sie die Koordinaten des Vektors, der sowohl ein Normalenvektor von \(E\) als auch der Ortsvektor eines Punktes der Ebene \(E\) ist.

    (3 BE)

  • Gegeben ist die Ebene \(E \colon 2x_{1} + x_{2} - 2x_{3} = -18\).

    Der Schnittpunkt von \(E\) mit der \(x_{1}\)-Achse, der Schnittpunkt von \(E\) mit der \(x_{2}\)-Achse und der Koordinatenursprung sind die Eckpunkte eines Dreiecks. Bestimmen Sie den Flächeninhalt dieses Dreiecks.

    (2 BE)

  • Auf der Strecke \([AB]\) gibt es einen Punkt \(D\), der von \(B\) dreimal so weit entfernt ist wie von \(A\). Bestimmen Sie die Koordinaten von \(D\).

    (2 BE)

  • Gegeben sind die Punkte \(A(2|1|-4)\), \(B(6|1|-12)\) und \(C(0|1|0)\).

    Weisen Sie nach, dass der Punkt \(C\) auf der Geraden \(AB\), nicht aber auf der Strecke \([AB]\) liegt.

    (3 BE)