Geometrie 2

  • Abbildung 1 zeigt eine Sonnenuhr mit einer gegenüber der Horizontalen geneigten, rechteckigen Grundplatte, auf der sich ein kreisförmiges Zifferblatt befindet. Auf der Grundplatte ist der Polstab befestigt, dessen Schatten bei Sonneneinstrahlung die Uhrzeit auf dem Zifferblatt anzeigt.

    Abbildung 1 zu Teilaufgabe a Geometrie 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 1

    Eine Sonnenuhr dieser Bauart wird in einem kartesischen Koordinatensystem modellhaft dargestellt (vgl. Abbildung 2). Dabei beschreibt das Rechteck \(ABCD\) mit \(A\,(5|-4|0)\) und \(B\,(5|4|0)\) die Grundplatte der Sonnenuhr. Der Befestigungspunkt des Polstabs auf der Grundplatte wird im Modell durch den Diagonalenschnittpunkt \(M\,(2{,}5|0|2)\) des Rechtecks \(ABCD\) dargestellt. Eine Längeneinheit im Koordinatensystem entspricht 10 cm in der Realität. Die Horizontale wird im Modell durch die \(x_{1}x_{2}\)-Ebene beschrieben.

    Abbildung 2 zu Teilaufgabe a Geometrie 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 2

    Bestimmen Sie die Koordinaten des Punkts \(C\). Ermitteln Sie eine Gleichung der Ebene \(E\), in der das Rechteck \(ABCD\) liegt, in Normalenform.

    (mögliches Teilergebnis: \(E\colon 4x_{1} + 5x_{3} - 20 = 0\))

    (5 BE)

  • Die Grundplatte ist gegenüber der Horizontalen um den Winkel \(\alpha\) geneigt. Damit man mit der Sonnenuhr die Uhrzeit korrekt bestimmen kann, muss für den Breitengrad \(\varphi\) des Aufstellungsorts der Sonnenuhr \(\alpha + \varphi = 90^{\circ}\) gelten. Bestimmen Sie, für welchen Breitengrad \(\varphi\) die Sonnenuhr gebaut wurde.

    (4 BE)

  • Der Polstab wird im Modell durch die Strecke \([MS]\) mit \(S\,(4{,}5|0|4{,}5)\) dargestellt. Zeigen Sie, dass der Polstab senkrecht auf der Grundplatte steht, und berechnen Sie die Länge des Polstabs auf Zentimeter genau.

    (3 BE)

  • Sonnenlicht, das an einem Sommertag zu einem bestimmten Zeitpunkt \(t_{0}\) auf die Sonnenuhr einfällt, wird im Modell durch parallele Geraden mit dem Richtungsvektor \(\overrightarrow{u} = \begin{pmatrix} 6 \\ 6 \\ -13 \end{pmatrix}\) dargestellt.

    Weisen Sie nach, dass der Schatten der im Modell durch den Punkt \(S\) dargestellten Spitze des Polstabs außerhalb der rechteckigen Grundplatte liegt.

    (6 BE)

  • Um 6 Uhr verläuft der Schatten des Polstabs im Modell durch den Mittelpunkt der Kante \([BC]\), um 12 Uhr durch den Mittelpunkt der Kante \([AB]\) und um 18 Uhr durch den Mittelpunkt der Kante \([AD]\). Begründen Sie, dass der betrachtete Zeitpunkt \(t_{0}\) vor 12 Uhr liegt.

    (2 BE)

  • Die Gerade \(g\) verläuft durch die Punkte \(A\,(0|1|2)\) und \(B\,(2|5|6)\).

    Zeigen Sie, dass die Punkte \(A\) und \(B\) den Abstand 6 haben.

    Die Punkte \(C\) und \(D\) liegen auf \(g\) und haben von \(A\) jeweils den Abstand 12. Bestimmen Sie die Koordinaten von \(C\) und \(D\).

    (3 BE)

  • Die Punkte \(A\), \(B\) und \(E\,(1|2|5)\) sollen mit einem weiteren Punkt die Eckpunkte eines Parallelogramms bilden. Für die Lage des vierten Eckpunkts gibt es mehrere Möglichkeiten.

    Geben Sie für zwei dieser Möglichkeiten die Koordinaten des vierten Eckpunkts an.

    (2 BE)

  • Die Punkte \(P\) und \(Q\) liegen symmetrisch zu einer Ebene \(F\). Ermitteln Sie eine Gleichung von \(F\).

    (3 BE)

  • Gegeben sind die Ebene \(E \colon 2x_{1} + x_{2} + 2x_{3} = 6\) sowie die Punkte \(P(1|0|2)\) und \(Q(5|2|6)\).

    Zeigen Sie, dass die Gerade durch die Punkte \(P\) und \(Q\) senkrecht zur Ebene \(E\) verläuft.

    (2 BE)

  • Durch die Punkte \(A\) und \(B\) verläuft die Gerade \(g\).

    Betrachtet werden Geraden, für welche die Bedingungen I und II gelten:

    I  Jede dieser Geraden schneidet die Gerade \(g\) orhogonal.

    II Der Abstand jeder dieser Geraden vom Punkt \(A\) beträgt 3.

    Ermitteln Sie eine Gleichung für eine dieser Geraden.

    (3 BE)

  • Gegeben sind die Punkte \(A(-2|1|4)\) und \(B(-4|0|6)\)

    Bestimmen Sie die Koordinaten des Punkts \(C\) so, dass gilt: \(\overrightarrow{CA} = 2 \cdot \overrightarrow{AB}\).

    (2 BE)

  • Für die Fernsehübertragung eines Fußballspiels wird über dem Spielfeld eine bewegliche Kamera installiert. Ein Seilzugsystem, das an vier Masten befestigt wird, hält die Kamera in der gewünschten Position. Seilwinden, welche die Seile koordiniert verkürzen und verlängern, ermöglichen eine Bewegung der Kamera.

    In der Abbildung ist das horizontale Spielfeld modellhaft als Rechteck in der \(x_{1}x_{2}\)-Ebene eines kartesischen Koordinatensystems dargestellt. Die Punkte \(W_{1}\), \(W_{2}\), \(W_{3}\) und \(W_{4}\) beschreiben die Positionen der vier Seilwinden. Eine Längeneinheit im Koordinatensystem entspricht 1 m in der Realität, d. h. alle vier Seilwinden sind in einer Höhe von 30 m angebracht.

    Abbildung zu Geometrie 2 - Prüfungsteil B - Mathematik Abitur Bayern 2016

    Der Punkt \(A(45|60|0)\) beschreibt die Lage des Anstoßpunkts auf dem Spielfeld. Die Kamera befindet sich zunächst in einer Höhe von 25 m vertikal über dem Anstoßpunkt. Um den Anstoß zu filmen, wird die Kamera um 19 m vertikal abgesenkt. In der Abbildung ist die ursprüngliche Kameraposition durch den Punkt \(K_{0}\), die abgesenkte Position durch den Punkt \(K_{1}\) dargestellt.

    Berechnen Sie die Seillänge, die von jeder der vier Seilwinden abgerollt werden muss, um dieses Absenken zu ermöglichen, wenn man davon ausgeht, dass die Seile geradlinig verlaufen.

    (4 BE)

  • Kurze Zeit später legt sich ein Torhüter den Ball für einen Abstoß bereit. Der Abstoß soll von der Kamera aufgenommen werden. Durch das gleichzeitige Verlängern beziehungsweise Verkürzen der vier Seile wird die Kamera entlang einer geraden Bahn zu einem Zielpunkt bewegt, der in einer Höhe von 10 m über dem Spielfeld liegt. Im Modell wird der Zielpunkt durch den Punkt \(K_{2}\) beschrieben, die Bewegung der Kamera erfolgt vom Punkt \(K_{1}\) entlang der Geraden mit der Gleichung \(g \colon \overrightarrow{X} = \overrightarrow{K_{1}} + \lambda \cdot \begin{pmatrix} 3 \\ 20 \\ 2 \end{pmatrix}, \, \lambda \in \mathbb R\), zum Punkt \(K_{2}\).

    Bestimmen Sie die Koordinaten von \(K_{2}\).

    (Ergebnis: \(K_{2}(51|100|10)\))

    (3 BE)

  • Im Zielpunkt ist die Kamera zunächst senkrecht nach unten orientiert. Um die Position des Balls anzuvisieren, die im Modell durch den Punkt \(B(40|105|0)\) beschrieben wird, muss die Kamera gedreht werden.

    Berechnen Sie die Größe des erforderlichen Drehwinkels. 

    (4 BE)

  • Der Torwart führt den Abstoß aus. Der höchste Punkt der Flugbahn des Balls wird im Modell durch den Punkt \(H(50|70|15)\) beschrieben.

    Ermitteln Sie eine Gleichung der durch die Punkte \(W_{1}\), \(W_{2}\) und \(K_{2}\) festgelegten Ebene \(E\) in Normalenform und weisen Sie nach, dass \(H\) unterhalb von \(E\) liegt.

    (Mögliches Teilergebnis: \(E \colon x_{2} + 5x_{3} - 150 = 0\))

    (7 BE)

  • Machen Sie plausibel, dass folgende allgemeine Schlussfolgerung falsch ist: „Liegen der Startpunkt und der anvisierte höchste Punkt einer Flugbahn des Balls im Modell unterhalb der Ebene \(E\), so kann der Ball entlang seiner Bahn die Seile, die durch \([W_{1}K_{2}]\) und \([W_{2}K_{2}]\) beschrieben werden, nicht berühren."

    (2 BE)

  • Gegeben sind die beiden bezüglich der \(x_{1}x_{3}\)-Ebene symmetrisch liegenden Punkte \(A(2|3|1)\) und \(B(2|-3|1)\) sowie der Punkt \(C(0|2|0)\).

    Weisen Sie nach, dass das Dreieck \(ABC\) bei \(C\) rechtwinklig ist.

    (3 BE)

  • Geben Sie die Koordinaten eines weiteren Punkts \(D\) der \(x_{2}\)-Achse an, so dass das Dreieck \(ABD\) bei \(D\) rechtwinklig ist. Begründen Sie Ihre Antwort.

    (2 BE)

  • Gegeben ist die Ebene \(E \colon 2x_{1} + x_{2} - 2x_{3} = -18\).

    Der Schnittpunkt von \(E\) mit der \(x_{1}\)-Achse, der Schnittpunkt von \(E\) mit der \(x_{2}\)-Achse und der Koordinatenursprung sind die Eckpunkte eines Dreiecks. Bestimmen Sie den Flächeninhalt dieses Dreiecks.

    (2 BE)

  • Ermitteln Sie die Koordinaten des Vektors, der sowohl ein Normalenvektor von \(E\) als auch der Ortsvektor eines Punktes der Ebene \(E\) ist.

    (3 BE)