Mathematik Abitur Bayern 2014

  • Geben Sie \(f(-2)\) an und zeichnen Sie \(G_f\) unter Berücksichtigung der bisherigen Ergebnisse in ein Koordinatensystem ein (Platzbedarf im Hinblick auf die folgenden Aufgaben: \(-3 \leq y \leq 7\)).

    (3 BE)

  • Die Funktion \(f\) ist in \(D_f\) umkehrbar. Geben Sie die Definitionsmenge der Umkehrfunktion \(f^{-1}\) von \(f\) an und zeigen Sie, dass \(f^{-1} (x) = -\frac{1}{2}x^2 + 2x + 4\) gilt.

    (4 BE)

  • Der Verlauf des oberen Blattrands wird in der Nähe der Blattspitze durch das bisher verwendete Modell nicht genau genug dargestellt. Daher soll der obere Blattrand im Modell für \(-2 \leq x \leq 0\) nicht mehr durch \(G_h\), sondern durch den Graphen \(G_k\) einer in \(\mathbb R\) definierten ganzrationalen Funktion \(k\) dritten Grades beschrieben werden. Für die Funktion \(k\) werden die folgenden Bedingungen gewählt (\(k'\) und \(h'\) sind die Ableitungsfunktionen von \(k\) bzw. \(h\)):

    \[\begin{align*} \sf{I} & \quad k(0) = h(0) \\[0.8em] \sf{II} & \quad k'(0) = h'(0) \\[0.8em] \sf{III} & \quad k(-2) = h(-2) \\[0.8em] \sf{IV} & \quad k'(-2) = 1{,}5 \end{align*}\]

    Begründen Sie im Sachzusammenhang, dass die Wahl der Bedingungen I, II und III sinnvoll ist. Machen Sie plausibel, dass die Bedingung IV dazu führt, dass die Form des Blatts in der Nähe der Blattspitze im Vergleich zum ursprünglichen Modell genauer dargestellt wird.

    (3 BE)

  • Gegeben ist die Funktion \(f\) mit \(\displaystyle f(x) = \frac{20x}{x^2 - 25}\) und maximalem Definitionsbereich \(D_f\). Die Abbildung zeigt einen Teil des Graphen \(G_f\) von \(f\).

    Abbildung zu Teilaufgabe 1a

    Zeigen Sie, dass \(D_f = \mathbb R \, \backslash \, \{-5;5\}\) gilt und dass \(G_f\) symmetrisch bezüglich des Koordinatenursprungs ist. Geben Sie die Nullstelle von \(f\) sowie die Gleichungen der drei Asymptoten von \(G_f\) an.

    (5 BE)

  • Weisen Sie nach, dass die Steigung von \(G_f\) in jedem Punkt des Graphen negativ ist. Berechnen Sie die Größe des Winkels, unter dem \(G_f\) die \(x\)-Achse schneidet.

    (4 BE)

  • Skizzieren Sie in der Abbildung den darin fehlenden Teil von \(G_f\) unter Berücksichtigung der bisherigen Ergebnisse.

    (3 BE)

  • Die Funktion \(f^* \colon\mapsto f(x)\) mit Definitionsbereich \(]5;+\infty[\) unterscheidet sich von der Funktion \(f\) nur hinsichtlich des Definitionsbereichs. Begründen Sie, dass die Funktion \(f\) nicht umkehrbar ist, die Funktion \(f^*\) dagegen schon. Zeichnen Sie den Graphen der Umkehrfunktion von \(f^*\) in die Abbildung ein.

    (4 BE)

  • Der Graph von \(f\), die \(x\)-Achse sowie die Geraden mit den Gleichungen \(x = 10\) und \(x = s\) mit \(s > 10\) schließen ein Flächenstück mit dem Inhalt \(A(s)\) ein. Bestimmen Sie \(A(s)\).

    (Ergebnis: \(\displaystyle A(s) = 10 \cdot \ln{\frac{s^2 - 25}{75}}\))

    (5 BE)

  • Ein Motorboot fährt mit konstanter Motorleistung auf einem Fluss eine Strecke der Länge 10 km zuerst flussabwärts und unmittelbar anschließend flussaufwärts zum Ausgangspunkt zurück. Mit der Eigengeschwindigkeit des Motorboots wird der Betrag der Geschwindigkeit bezeichnet, mit der sich das Boot bei dieser Motorleistung auf einem stehenden Gewässer bewegen würde.

    Im Folgenden soll modellhaft davon ausgegangen werden, dass die Eigengeschwindigkeit des Boots während der Fahrt konstant ist und das Wasser im Fluss mit der konstanten Geschwindigkeit 5 \(\frac{\sf{km}}{\sf{h}}\) fließt. Die für das Wendemanöver erforderliche Zeit wird vernachlässigt.

    Die Gesamtfahrzeit in Stunden, die das Boot für Hinfahrt und Rückfahrt insgesamt benötigt, wird im Modell für \(x > 5\) durch den Term \(\displaystyle t(x) = \frac{10}{x + 5} + \frac{10}{x - 5}\) angegeben. Dabei ist \(x\) die Eigengeschwindigkeit des Boots in \(\frac{\sf{km}}{\sf{h}}\).

    Bestimmen Sie auf der Grundlage des Modells für eine Fahrt mit einer Eigengeschwindigkeit von 10 \(\frac{\sf{km}}{\sf{h}}\) und für eine Fahrt mit einer Eigengeschwindigkeit von 20 \(\frac{\sf{km}}{\sf{h}}\) jeweils die Gesamtfahrzeit in Minuten.

    (2 BE)

  • Begründen Sie, dass der erste Summand des Terms \(t(x)\) die für die Hinfahrt, der zweite Summand die für die Rückfahrt erforderliche Zeit in Stunden angibt.

    (3 BE)

  • Begründen Sie im Sachzusammenhang, dass \(t(x)\) für \(0 < x < 5\) nicht als Gesamtfahrzeit interpretiert werden kann.

    (2 BE)

  • Zeigen Sie, dass die Terme \(f(x)\) und \(t(x)\) äquivalent sind.

    (2 BE)

  • Beschreiben Sie, wie man mithilfe der Abbildung für eine Fahrt mit einer Gesamtfahrzeit zwischen zwei und vierzehn Stunden die zugehörige Eigengeschwindigkeit des Boots näherungsweise ermitteln kann. Berechnen Sie auf der Grundlage des Modells die Eigengeschwindigkeit des Boots für eine Fahrt mit einer Gesamtfahrzeit von vier Stunden.

    (5 BE)

  • Ermitteln Sie \(s\) so, dass das Flächenstück aus Aufgabe 1e den Inhalt 100 besitzt.

    (3 BE)

  • Bestimmen Sie das Verhalten von \(A(s)\) für \(s \to +\infty\).

    (2 BE)

  • Im Rahmen der sogenannten JIM-Studie wurde in Deutschland im Jahr 2012 der Umgang von Jugendlichen im Alter von 12 bis 19 Jahren mit Informationen und Medien untersucht. In der folgenden Tabelle werden ausgewählte Ergebnisse der Studie anhand einer repräsentativen Auswahl von 200 Jugendlichen wiedergegeben, von denen 102 Jungen sind. Dabei werden für vier Geräteklassen jeweils die Anzahl der Mädchen und die Anzahl der Jungen unter den 200 ausgewählten Jugendlichen angegeben, die ein entsprechendes Gerät besitzen.

    Tabelle zur Aufgabengruppe Stochastik 1

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass eine aus den 200 Jugendlichen zufällig ausgewählte Person weiblich ist und kein Fernsehgerät besitzt.

    (2 BE)

  • Aus den 200 Jugendlichen wird eine Person zufällig ausgewählt, die ein Fernsehgerät besitzt. Ermitteln Sie die Wahrscheinlichkeit dafür, dass diese Person weiblich ist.

    (2 BE)

  • Begründen Sie, dass die Ereignisse „Eine aus den 200 Jugendlichen zufällig ausgewählte Person besitzt ein Fernsehgerät." und „Eine aus den 200 Jugendlichen zufällig ausgewählte Person ist ein Mädchen." abhängig sind.

    (2 BE)

  • Der Studie zufolge besitzen 55 % der Mädchen im Alter von 12 bis 19 Jahren ein Fernsehgerät.

    Geben Sie den Wert der Summe \(\sum \limits_{i \, = \, 0}^{12} B(25;0{,}55;i)\) in Prozent an. Begründen Sie, dass der Wert im Allgemeinen nicht die Wahrscheinlichkeit dafür angibt, dass von den 25 Schülerinnen einer Klasse der Jahrgangsstufe 9 weniger als die Hälfte ein Fernsehgerät besitzen.

    (3 BE)

  • Der JIM-Studie zufolge besitzen deutlich weniger als 90 % der Jugendlichen einen Computer. Daher wird an den Stadtrat einer Kleinstadt der Wunsch herangetragen, im örtlichen Jugendzentrum einen Arbeitsraum mit Computern einzurichten. Der Stadtrat möchte die dafür erforderlichen finanziellen Mittel nur dann bewilligen, wenn weniger als 90 % der Jugendlichen der Kleinstadt einen Computer besitzen.

    Die Entscheidung über die Bewilligung der finanziellen Mittel soll mithilfe einer Befragung von 100 zufällig ausgewählten 12- bis 19-jährigen Jugendlichen der Kleinstadt getroffen werden. Die Wahrscheinlichkeit dafür, dass die finanziellen Mittel irrtümlich bewilligt werden, soll höchstens 5 % betragen. Bestimmen Sie die zugehörige Entscheidungsregel, bei der zugleich die Wahrscheinlichkeit dafür, dass die finanziellen Mittel irrtümlich nicht bewilligt werden, möglichst klein ist.

    (4 BE)

Seite 3 von 4