Mathematik Abitur Bayern 2015

  • Beschreiben Sie im Sachzusammenhang jeweils ein Ereignis, dessen Wahrscheinlichkeit durch den angegebenen Term berechnet werden kann.

    α) \(\displaystyle 1 - \left( \frac{3}{5} \right)^{8}\)

    β) \(\displaystyle \left( \frac{3}{5} \right)^{8} + 8 \cdot \frac{2}{5} \cdot \left( \frac{3}{5} \right)^{7}\)

    (3 BE)

  • Für ein Zufallsexperiment wird eine Zufallsgröße \(X\) festgelegt, welche die drei Werte -2, 1 und 2 annehmen kann. In der Abbildung ist die Wahrscheinlichkeitsverteilung von \(X\) dargestellt.

    Ermitteln Sie mithilfe der Abbildung den Erwartungswert der Zufallsgröße \(X\).

    Abbildung zu Teilaufgabe 2 Stochastik 2 Prüfungsteil A Mathematik Abitur Bayern 2015

     

    (2 BE)

  • Das Zufallsexperiment wird zweimal durchgeführt. Dabei wird jeweils der Wert der Zufallsgröße \(X\) notiert. Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Summe dieser beiden Werte negativ ist. 

    (3 BE)

  • Die Gerade \(g\) verläuft durch die Punkte \(A\,(0|1|2)\) und \(B\,(2|5|6)\).

    Zeigen Sie, dass die Punkte \(A\) und \(B\) den Abstand 6 haben.

    Die Punkte \(C\) und \(D\) liegen auf \(g\) und haben von \(A\) jeweils den Abstand 12. Bestimmen Sie die Koordinaten von \(C\) und \(D\).

    (3 BE)

  • Die Punkte \(A\), \(B\) und \(E\,(1|2|5)\) sollen mit einem weiteren Punkt die Eckpunkte eines Parallelogramms bilden. Für die Lage des vierten Eckpunkts gibt es mehrere Möglichkeiten.

    Geben Sie für zwei dieser Möglichkeiten die Koordinaten des vierten Eckpunkts an.

    (2 BE)

  • Betrachtet wird die Pyramide \(ABCDS\) mit \(A\,(0|0|0)\), \(B\,(4|4|2)\), \(C\,(8|0|2)\), \(D\,(4|-4|0)\) und \(S\,(1|1|-4)\). Die Grundfläche \(ABCD\) ist ein Parallelogramm.

    Weisen Sie nach, dass das Parallelogramm \(ABCD\) ein Rechteck ist.

    (2 BE)

  • Die Kante \([AS]\) steht senkrecht auf der Grundfläche \(ABCD\). Der Flächeninhalt der Grundfläche beträgt \(24\sqrt{2}\).

    Ermitteln Sie das Volumen der Pyramide.

    (3 BE)

  • Die Abbildung zeigt die Pyramide \(ABCDS\) mit quadratischer Grundfläche \(ABCD\). Der Pyramide ist eine Stufenpyramide einbeschrieben, die aus Würfeln mit der Kantenlänge 1 besteht.

    Abbildung zu Teilaufgabe 2 Geometrie 2 Prüfungsteil A Mathematik Abitur Bayern 2015

    Geben Sie das Volumen der Stufenpyramide und die Höhe der Pyramide \(ABCDS\) an.

    (2 BE)

  • Bestimmen Sie unter Verwendung eines geeignet gewählten kartesischen Koordinatensystems eine Gleichung für die Gerade, die durch die Punkte \(B\) und \(S\) verläuft.

    Zeichnen Sie das gewählte Koordinatensystem in die Abbildung ein.

    (3 BE)

  • Gegeben ist die Funktion \(f\) mit \(\displaystyle f(x) = \frac{1}{x + 1} - \frac{1}{x + 3}\) und Definitionsmenge \(D_{f} = \mathbb R \, \backslash \, \{-3;-1\}\). Dr Graph von \(f\) wird mit \(G_{f}\) bezeichnet.

    Zeigen Sie, dass \(f(x)\) zu jedem der drei folgenden Terme äquivalent ist:

    \(\displaystyle \frac{2}{(x + 1)(x + 3)}\); \(\displaystyle \frac{2}{x^2 + 4x + 3}\); \(\displaystyle \frac{1}{0{,}5 \cdot (x + 2)^2 - 0{,}5}\) 

    (4 BE)

  • Begründen Sie, dass die \(x\)-Achse horizontale Asymptote von \(G_{f}\) ist, und geben Sie die Gleichungen der vertikalen Asymptoten von \(G_{f}\) an. Bestimmen Sie die Koordinaten des Schnittpunkts von \(G_{f}\) mit der \(y\)-Achse.

    (3 BE)

  • Abbildung 1 zeigt den Graphen der in \(\mathbb R\) definierten Funktion \(p \colon x \mapsto 0{,}5 \cdot (x + 2)^2 - 0{,}5\), die die Nullstellen \(x = -3\) und \(x = -1\) hat.

    Für \(x \in D_{f}\) gilt \(\displaystyle f(x) = \frac{1}{p(x)}\).

    Abbildung 1 zu Teilaufgabe 1c Analysis 1 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 1

    Gemäß der Quotientenregel gilt für die Ableitung \(f'\) und \(p'\) die Beziehung \(\displaystyle f'(x) = -\frac{p'(x)}{\big( p(x) \big)^2}\) für \(x \in D_{f}\).

    Zeigen Sie unter Verwendung dieser Beziehung und ohne Berechnung von \(f'(x)\) und \(p'(x)\), dass \(x = -2\) einzige Nullstelle von \(f'\) ist und dass \(G_{f}\) in \(]-3;-2[\) streng monoton steigend sowie in \(]-2;1[\) streng monoton fallend ist. Geben Sie Lage und Art des Extrempunkts von \(G_{f}\) an.

    (5 BE)

  • Berechnen Sie \(f(-5)\) und \(f(-1{,}5)\) und skizzieren Sie \(G_{f}\) unter Berücksichtigung der bisherigen Ergebnisse in Abbildung 1.

    (4 BE)

  • Gegeben ist die Funktion \(\displaystyle h \colon x \mapsto \frac{3}{e^{x + 1} - 1}\) mit Definitionsbereich \(D_{h} = ]-1;+\infty[\). Abbildung 2 zeigt den Graphen \(G_{h}\) von \(h\).

    abbildung 2 zu Teilaufgabe 2 Analysis 1 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 2

    Begründen Sie anhand des Funktionsterms, das \(\lim \limits_{x \, \to \, +\infty} h(x) = 0\) gilt.

    Zeigen Sie rechnerisch für \(x \in D_{h}\), dass für die Ableitung \(h'\) von \(h\) gilt: \(h'(x) < 0\).

    (4 BE)

  • Gegeben ist ferner die in \(D_{h}\) definierte Integralfunktion \(\displaystyle H_{0} \colon x \mapsto \int_{0}^{x} h(t) \,dt\).

    Begründen Sie ohne weitere Rechnung, dass folgende Aussagen wahr sind:

    α) Der Graph von \(H_{0}\) ist streng monoton steigend.

    β) Der Graph von \(H_{0}\) ist rechtsgekrümmt.

    (4 BE)

  • Geben Sie die Nullstelle von \(H_{0}\) an und bestimmen Sie näherungsweise mithilfe von Abbildung 2 die Funktionswerte \(H_{0}(-0{,}5)\) sowie \(H_{0}(3)\). Skizzieren Sie in Abbildung 2 den Graphen von \(H_{0}\) im Bereich \(-0{,}5 \leq x \leq 3\).

    (6 BE)

  • In einem Labor wird ein Verfahren zur Reinigung von mit Schadstoffen kontaminiertem Wasser getestet. Die Funktion \(h\) aus Aufgabe 2 beschreibt für \(x \geq 0\) modellhaft die zeitliche Entwicklung des momentanen Schadstoffabbaus in einer bestimmten Wassermenge. Dabei bezeichnet \(h(x)\) die momentane Schadstoffabbaurate in Gramm pro Minute und \(x\) die seit Beginn des Reinigungsvorgangs vergangene Zeit in Minuten.

    Bestimmen Sie auf der Grundlage des Modells den Zeitpunkt \(x\), zu dem die momentane Schadstoffabbaurate auf 0,01 Gramm pro Minute zurückgegangen ist.

    (3 BE)

  • Die in \(\mathbb R \, \backslash \, \{-3;-1\}\) definierte Funktion \(\displaystyle k \colon x \mapsto 3 \cdot \left( \frac{1}{x + 1} - \frac{1}{x + 3} \right) - 0{,}2\) stellt im Bereich \(-0{,}5 \leq x \leq 2\) eine gute Näherung für die Funktion \(h\) dar.

    Beschreiben Sie, wie der Graph der Funktion \(k\) aus dem Graphen der Funktion \(f\) aus Aufgabe 1 hervorgeht.

    (2 BE)

  • Berechnen Sie einen Näherungswert für \(\displaystyle \int_{0}^{1} h(x)\,dx\), indem Sie den Zusammenhang \(\displaystyle \int_{0}^{1}h(x)\,dx \approx \int_{0}^{1}k(x)\,dx\) verwenden. Geben Sie die Bedeutung dieses Wertes im Sachzusammenhang an.

    (5 BE)

  • Der Graph \(G_{f}\) einer in \(\mathbb R\) definierten Funktion \(f \colon x \mapsto ax^4 + bx^3\) mit \(a,b \in \mathbb R\) besitzt im Punkt \(O\,(0|0)\) einen Wendepunkt mit waagrechter Tangente.

    \(W\,(1|-1)\) ist ein weiterer Wendepunkt von \(G_{f}\). Bestimmen Sie mithilfe dieser Informationen die Werte von \(a\) und \(b\).

    (Ergebnis: \(a = 1, b = -2\))

    (4 BE)

Seite 2 von 4