Wahrscheinlichkeitsrechnung

  • Ermitteln Sie auf fünf Prozent genau, wie groß die Wahrscheinlichkeit dafür, sich bei einer Schriftprobe richtig zu entscheiden, für einen Bewerber mindestens sein muss, damit die Wahrscheinlichkeit dafür, dass er den Vortest besteht, mindestens 90 % beträgt.

    (3 BE)

  • Ein Unternehmen lässt im Rahmen von Bewerbungsverfahren graphologische Gutachten zu den Personen erstellen, die sich um eine Stelle bewerben. Im Mittel werden 25 % der Bewerber aufgrund ihres graphologischen Gutachtens abgewiesen. Für eine Stelle bewerben sich 20 Personen.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Anzahl derjenigen Bewerber, die aufgrund ihres graphologischen Gutachtens abgelehnt werden, kleiner als die dafür im Mittel zu erwartende Anzahl ist.

    (3 BE)

  • Betrachtet wir das Ereignis \(E\): „Nach Durchführung des Zufallsexperiments befinden sich wieder drei weiße Kugeln in Urne A." Untersuchen Sie, ob das Ereignis \(E\) eine größere Wahrscheinlichkeit als sein Gegenereignis hat.

    (3 BE)

  • Betrachtet wir das Ereignis \(E\): „Nach Durchführung des Zufallsexperiments befinden sich wieder drei weiße Kugeln in Urne A." Untersuchen Sie, ob das Ereignis \(E\) eine größere Wahrscheinlichkeit als sein Gegenereignis hat.

    (3 BE)

  • Das Baumdiagramm gehört zu einem Zufallsexperiment mit den Ereignissen \(C\) und \(D\).

    Baumdiagramm zu Teilaufgabe 2

    Berechnen Sie \(P(\overline{D})\).

    (1 BE)

  • Weisen Sie nach, dass die Ereignisse \(C\) und \(D\) abhängig sind.

    (2 BE)

  • Von den im Baumdiagramm angegebenen Zahlenwerten soll nur der Wert \(\frac{\sf{1}}{\sf{10}}\) so geändert werden, dass die Ereignisse \(C\) und \(D\) unabhängig sind. Bestimmen Sie den geänderten Wert.

    (2 BE)

  • Im Rahmen der sogenannten JIM-Studie wurde in Deutschland im Jahr 2012 der Umgang von Jugendlichen im Alter von 12 bis 19 Jahren mit Informationen und Medien untersucht. In der folgenden Tabelle werden ausgewählte Ergebnisse der Studie anhand einer repräsentativen Auswahl von 200 Jugendlichen wiedergegeben, von denen 102 Jungen sind. Dabei werden für vier Geräteklassen jeweils die Anzahl der Mädchen und die Anzahl der Jungen unter den 200 ausgewählten Jugendlichen angegeben, die ein entsprechendes Gerät besitzen.

    Tabelle zur Aufgabengruppe Stochastik 1

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass eine aus den 200 Jugendlichen zufällig ausgewählte Person weiblich ist und kein Fernsehgerät besitzt.

    (2 BE)

  • Aus den 200 Jugendlichen wird eine Person zufällig ausgewählt, die ein Fernsehgerät besitzt. Ermitteln Sie die Wahrscheinlichkeit dafür, dass diese Person weiblich ist.

    (2 BE)

  • Begründen Sie, dass die Ereignisse „Eine aus den 200 Jugendlichen zufällig ausgewählte Person besitzt ein Fernsehgerät." und „Eine aus den 200 Jugendlichen zufällig ausgewählte Person ist ein Mädchen." abhängig sind.

    (2 BE)

  • Bestimmen Sie die Wahrscheinlichkeit dafür, dass unter den 100 befragten Jugendlichen genau 85 einen Computer besitzen, wenn der Anteil derjenigen Jugendlichen, die einen Computer besitzen, unter den Jugendlichen der Kleinstadt ebenso groß ist wie unter den in der Tabelle erfassten Jugendlichen.

    (3 BE)

  • Es ist zu vermuten, dass unter den Jugendlichen, die ein Smartphone besitzen, der Anteil derjenigen, die eine feste Spielkonsole besitzen, größer ist als unter den Jugendlichen, die kein Smartphone besitzen. Bestimmen Sie für die in der Tabelle erfassten 200 Jugendlichen, wie groß die Anzahl derjenigen Personen, die sowohl ein Smartphone als auch eine feste Spielkonsole besitzen, mindestens sein muss, damit die Vermutung für die in der Tabelle erfassten Jugendlichen zutrifft.

    (4 BE)

  • Einem Jungen fehlen in seinem Sammelalbum noch 15 Bilder. Er geht mit seiner Mutter zum Einkaufen und erhält anschließend zwei Päckchen mit Tierbildern. Bestimmen Sie die Wahrscheinlichkeit dafür, dass die beiden Päckchen nur Bilder enthalten, die der Junge bereits in seinem Sammelalbum hat.

    (3 BE)

  • Um Geld für die Ausstattung des örtlichen Kindergartens einzunehmen, veranstaltet der Supermarkt ein Gewinnspiel. Die fünf Sektoren des dabei eingesetzten Glücksrads sind von 1 bis 5 durchnummeriert. Die Größe der Sektoren ist direkt proportional zum Zahlenwert der Nummern; beispielsweise ist der Sektor mit der Nummer 3 dreimal so groß wie der Sektor mit der Nummer 1. Nachdem der Spieler sechs Euro bezahlt hat, wird das Glücksrad einmal gedreht. Erzielt der Spieler eine der Nummern 1 bis 4, so wird ihm der zugehörige Zahlenwert als Betrag in Euro ausgezahlt, erzielt er die Nummer 5, so erhält er eine Eintrittskarte für einen Freizeitpark im Wert von fünfzehn Euro.

    Bestimmen Sie die Größe des Öffnungswinkels des Sektors mit der Nummer 1 sowie die Wahrscheinlichkeit dafür, dass ein Spieler bei einem Spiel eine Eintrittskarte gewinnt

    (Teilergebnis: Größe des Öffnungswinkels: 24°)

    (3 BE)

  • Berechnen Sie den Erwartungswert der Auszahlung pro Spiel, wenn der Gewinn einer Eintrittskarte mit einer Auszahlung von fünfzehn Euro gleichgesetzt wird. Interpretieren Sie das Ergebnis.

    (4 BE)

  • Der Supermarkt muss für jede Eintrittskarte nur zehn Euro an den Freizeitpark bezahlen. Damit ist bei der Spielaktion ein finanzieller Überschuss zu erwarten, der an den örtlichen Kindergarten gespendet werden soll. Ermitteln Sie den zu erwartenden Überschuss, wenn man davon ausgeht, dass das Spiel insgesamt 6000-mal durchgeführt wird.

    (3 BE)

  • Bei der Wintersportart Biathlon wird bei jeder Schießanlage auf fünf Scheiben geschossen. Ein Biathlet tritt bei einem Einzelrennen zu einer Schießeinlage an, bei der er auf jede Scheibe einen Schuss abgibt. Diese Schießeinlage wird modellhaft durch eine Bernoullikette mit der Länge 5 und der Trefferwahrscheinlichkeit \(p\) beschrieben.

    Geben Sie für die folgenden Ereignisse \(A\) und \(B\) jeweils einen Term an, der die Wahrscheinlichkeit des Ereignisses in Abhängigkeit von \(p\) beschreibt.

    \(A\): „Der Biathlet trifft bei genau vier Schüssen."

    \(B\): „Der Biathlet trifft nur bei den ersten beiden Schüssen."

    (3 BE)

  • In einer Urne befinden sich vier rote und sechs blaue Kugeln. Aus dieser wird achtmal eine Kugel zufällig gezogen, die Farbe notiert und die Kugel anschließend wieder zurückgelegt.

    Geben Sie einen Term an, mit dem die Wahrscheinlichkeit des Ereignisses „Es werden gleich viele rote und blaue Kugeln gezogen." berechnet werden kann. 

    (2 BE)

  • Beschreiben Sie im Sachzusammenhang jeweils ein Ereignis, dessen Wahrscheinlichkeit durch den angegebenen Term berechnet werden kann.

    α) \(\displaystyle 1 - \left( \frac{3}{5} \right)^{8}\)

    β) \(\displaystyle \left( \frac{3}{5} \right)^{8} + 8 \cdot \frac{2}{5} \cdot \left( \frac{3}{5} \right)^{7}\)

    (3 BE)

  • Das Zufallsexperiment wird zweimal durchgeführt. Dabei wird jeweils der Wert der Zufallsgröße \(X\) notiert. Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Summe dieser beiden Werte negativ ist. 

    (3 BE)