Wahrscheinlichkeitsrechnung

  • Die drei Urnen mit den in der Abbildung dargestellten Inhalten bilden den Ausgangspunkt für folgendes Spiel:

    Es wird zunächst ein Einsatz von 1 € eingezahlt. Anschließend wird eine der drei Urnen zufällig ausgewählt und danach aus dieser Urne eine Kugel zufällig gezogen. Nur dann, wenn diese Kugel schwarz ist, wird ein bestimmter Geldbetrag ausgezahlt.

    Ermitteln Sie, wie groß dieser Geldbetrag sein muss, damit bei diesem Spiel auf lange Sicht Einsätze und Auszahlungen ausgeglichen sind.

    (3 BE)

  • Das elektronische Stabilitätsprogramm (ESP) eines Autos kann Schleuderbewegungen und damit Unfälle verhindern.

    Gehen Sie bei den folgenden Aufgaben davon aus, dass 40 % aller Autos mit ESP ausgerüstet sind.

    200 Autos werden nacheinander zufällig ausgewählt; die Zufallsgröße \(X\) beschreibt die Anzahl der ausgewählten Autos mit ESP.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass von den ausgewählten Autos mindestens 70 mit ESP ausgerüstet sind.

    (3 BE)

  • Bestimmen Sie die Wahrscheinlichkeiten folgender Ereignisse.

    \(A\): „Das fünfte ausgewählte Auto ist das erste mit ESP."

    \(B\): „Die Zufallsgröße \(X\) nimmt einen Wert an, der von ihrem Erwartungswert höchstens um eine Standardabweichung abweicht."

    (7 BE)

  • Das Parkhaus ist nun mit 100 Autos besetzt, von denen 40 mit ESP ausgerüstet sind.

    Sieben von diesen 100 Autos sind Kleinwagen und nicht mit ESP ausgerüstet, 90 sind keine Kleinwagen. Betrachtet werden folgende Ereignisse.

    \(E\): „Ein im Parkhaus zufällig ausgewähltes Auto ist mit ESP ausgerüstet."

    \(K\): „Bei einem im Parkhaus zufällig ausgewählten Auto handelt es sich um einen Kleinwagen."

    Geben Sie die Bedeutung von \(P_{K}(E)\) im Sachzusammenhang an und ermitteln Sie diese Wahrscheinlichkeit.

    (3 BE)

  • 30 der im Parkhaus stehenden Autos werden zufällig ausgewählt. Bestimmen Sie die Wahrscheinlichkeit dafür, dass darunter genau 40 % mit ESP ausgerüstet sind.

    (4 BE)

  • Folgende Tabelle gibt die Verteilung der Blutgruppen und der Rhesusfaktoren innerhalb der Bevölkerung Deutschlands wieder:

    Tabelle: Verteilung der Blutgruppen und Rhesusfaktoren

    In einem Krankenhaus spenden an einem Vormittag 25 Personen Blut. Im Folgenden soll angenommen werden, dass diese 25 Personen eine zufällige Auswahl aus der Bevölkerung darstellen. 

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass genau zehn der Spender die Blutgruppe \(A\) haben.

    (3 BE)

  • Folgende Tabelle gibt für die verschiedenen Empfänger von Spenderblut an, welches Spenderblut für sie jeweils geeignet ist:

    Tabelle: Eignung von Spenderblut für verschiedene Empfänger

    Für einen Patienten mit der Blutgruppe \(B\) und dem Rhesusfaktor \(Rh-\) wird Spenderblut benötigt. Bestimmen Sie, wie viel zufällig ausgewählte Personen mindestens Blut spenden müssten, damit man mit einer Wahrscheinlichkeit von mehr als 95 % mindestens eine für diesen Patienten geeignete Blutspende erhält.

    (5 BE)

  • Die Zufallsgröße \(X\) beschreibt die Anzahl der von einem Kandidaten zu lösenden Aufgaben aus dem Fach Mathematik. Der Tabelle kann die Wahrscheinlichkeitsverteilung von \(X\) entnommen werden. Ermitteln Sie den fehlenden Wert der Wahrscheinlichkeitsverteilung sowie den Erwartungswert von \(X\,\).

     

    \(\displaystyle x\) \(\displaystyle 0\) \(\displaystyle 1\) \(\displaystyle 2\) \(\displaystyle 3\) \(\displaystyle 4\)
    \(\displaystyle P(X = x)\) \(\displaystyle \frac{1}{9}\) \(\displaystyle \frac{1}{3}\) \(\displaystyle \frac{13}{36}\)   \(\displaystyle \frac{1}{36}\)

     

    (3 BE)

  • Die Zufallsgröße \(X\) beschreibt, wie oft der Mechanismus beim Schließen des Vorhangs im Verlauf einer Aufführung nicht funktioniert. Bestimmen Sie die Wahrscheinlichkeit dafür, dass der Wert von \(X\) um mehr als eine Standardabweichung vom Erwartungswert der Zufallsgröße abweicht.

    (5 BE)

  • Beschreiben Sie das Ereignis \(\overline{R} \cup \overline{V}\) im Sachzusammenhang und bestimmen Sie die Wahrscheinlichkeit dieses Ereignisses.

    (4 BE)

  • Für eine Quizshow sucht ein Fernsehsender Abiturientinnen und Abiturienten als Kandidaten. Jeder Bewerber gibt in einem online auszufüllenden Formular die Duchschnittsnote seines Abiturzeugnisses an.

    Insgesamt bewerben sich dreimal so viele weibliche wie männliche Personen, wobei 80 % der weiblichen und 75 % der männlichen Bewerber eine Durchschnittsnote von 1,5 oder besser angeben. Bestimmen Sie den Anteil der Personen unter allen Bewerbern, die eine schlechtere Durchschnittsnote als 1,5 angeben.

    (4 BE)

  • Im Rahmen der Show müssen Aufgaben aus verschiedenen Fachgebieten gelöst werden. Die Anzahl der von einem Kandidaten zu lösenden Aufgaben aus dem Fachgebiet Mathematik ist gleich der Augensumme, die von ihm bei einmaligem Werfen zweier Würfel erzielt wird. Die beiden Würfel tragen jeweils auf zwei Seitenflächen die Augenzahl 0, auf drei Seitenflächen die Augenzahl 1 und auf einer Seitenfläche die Augenzahl 2.

    Berechnen Sie die Wahrscheinlichkeit dafür, dass der erste Kandidat genau zwei Aufgaben aus dem Fachgebiet Mathematik lösen muss.

    (4 BE)

  • Der Showmaster zeigt die beiden ausgewählten Karten; sie sind tatsächlich rot. Der Kandidat wird nach der Wahrscheinlichkeit dafür gefragt, dass die beiden Karten aus dem Kuvert mit den drei roten Karten stammen. Bestimmen Sie diese Wahrscheinlichkeit.

    (3 BE)

  • Bei einer Routineinspektion wird die Passagierkabine eines zufällig ausgewählten Flugzeugs des Typs X überprüft. Ein Mangel der Beleuchtung sowie ein Mangel der Klimaanlage liegen bei Flugzeugen dieses Typs jeweils mit einer bestimmten Wahrscheinlichkeit vor; diese Wahrscheinlichkeiten können der folgenden Vierfeldertafel entnommen werden.

    Vierfeldertafel zu Teilaufgabe 3a - Stichhastik II - G8 Mathematik Abitur Bayern 2011

    \(B\): Beleuchtung einwandfrei

    \(\overline{B}\): Beleuchtung mangelhaft

    \(K\): Klimaanlage einwandfrei

    \(\overline{K}\): Klimaanlage mangelhaft

    Bestimmen Sie den Wert von \(x\) und beschreiben Sie das zugehörige Ereignis in Worten.

    (3 BE)

  • Bei Flugzeugen eines anderen Typs Y liegt ein Mangel der Klimaanlage mit einer Wahrscheinlichkeit von 4 % vor. Die Wahrscheinlichkeit dafür, dass mindestens einer der beiden Mängel vorliegt, beträgt 5 %. Wenn mindestens einer der beiden Mängel vorliegt, so funktioniert mit einer Wahrscheinlichkeit von 40 % die Beleuchtung nicht einwandfrei. Stellen Sie zu der für Flugzeuge des Typs Y beschriebenen Situation eine vollständig ausgefüllte Vierfeldertafel auf.

    (5 BE)

  • Aus dem Bewerberfeld werden zwanzig weibliche und zehn männliche Personen zu einem Casting eingeladen, das in zwei Gruppen durchgeführt wird. Fünfzehn der Eingeladenen werden für die erste Gruppe zufällig ausgewählt. Die Wahrscheinlichkeit dafür, dass für die erste Gruppe zehn weibliche und fünf männliche Personen ausgewählt werden, wird mit \(p\) bezeichnet.

    Begründen Sie im Sachzusammenhang, dass \(p\) nicht durch den Term

    \[\binom{15}{5} \cdot \left( \frac{1}{3} \right)^5 \cdot \left( \frac{2}{3} \right)^{10}\]

    beschrieben wird.

    (2 BE)

  • Bestimmen Sie die Wahrscheinlichkeit \(p\) mithilfe eines geeigneten Terms.

    (4 BE)

  • Mit welcher Wahrscheinlichkeit liegt bei dem zufällig ausgewählten Flugzeug des Typs X ein Mangel der Klimaanlage vor, wenn die Beleuchtung nicht einwandfrei funktioniert?

    (3 BE)

  • Begründen Sie, dass kein Ergebnis der Umfrage denkbar ist, bei dem \(p_1 > p_2\) ist.

    (2 BE)

  • Aus allen Befragten wird zufällig eine Person ausgewählt.

    Ermitteln Sie

    • die Wahrscheinlichkeit \(p_1\) dafür, dass die ausgewählte Person in Oberberg wohnt und sich gegen die Windkraftanlage aussprach.

    • die Wahrscheinlichkeit \(p_2\) dafür, dass die ausgewählte Person in Oberberg wohnt, wenn bekannt ist, dass sie sich gegen die Windkraftanlage aussprach.

    (4 BE)