Ableitungsfunktion

  • Die Tangente an den Graphen von \(f\) im Punkt \(Q_{a}\) wird mit \(t_{a}\) bezeichnet. Bestimmen Sie rechnerisch denjenigen Wert von \(a \in \mathbb R\), für den \(t_{a}\) durch \(P\) verläuft.

    (3 BE)

  • Bestimmen Sie das jeweilige Monotonieverhalten von \(f\) in den drei Teilintervallen \(]-\infty;-2[\), \(]-2;2[\) und \(]2;+\infty[\) der Definitionsmenge. Berechnen Sie zudem die Steigung der Tangente an \(G_{f}\) im Punkt \((0|f(0))\).

    (zur Kontrolle: \(f'(x) = -\dfrac{6 \cdot (x^{2} + 4)}{(x^{2} - 4)^{2}}\))

    (5 BE)

  • Betrachtet wird die in \(\mathbb R\) definierte Funktion \(g \colon x \mapsto \dfrac{e^{x}}{e^{x} + 1}\). Ihr Graph wird mit \(G_{g}\) bezeichnet.

    Zeigen Sie, dass \(g\) streng monoton zunehmen ist und die Wertemenge \(]0;1[\) besitzt.

    (zur Kontrolle: \(g'(x) = \dfrac{e^{x}}{(e^{x} + 1)^{2}}\))

    (5 BE)

  • Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f_a\) mit \(f_a(x) = a \cdot e^{-x} + 3\) und \(a \in \mathbb R \backslash \{0\}\).

    Zeigen Sie, dass \(f'_a(0) = -a\) gilt.

    (1 BE)

  • Die in \(\mathbb R\) definierte Funktion \(f\) besitzt die Nullstelle \(x = 2\), außerdem gilt \(f'(x) > 0\) für alle \(x \in \mathbb R\). Abbildung 2 zeigt den Graphen \(G_f\) von \(f\).

    Abbildung 2 Analysis 2 Prüfungsteil A Mathematik Abitur Bayern 2022

    Betrachtet wird die Funktion \(g \colon x \mapsto \ln{\left( f(x) \right)}\) mit maximaler Definitionsmenge \(D_g\). Geben Sie \(D_g\) an und ermitteln Sie mithilfe von Abbildung 2 diejenige Stelle \(x\), für die \(g'(x) = f'(x)\) gilt.

    (3 BE)

  • Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f_a\) mit \(f_a(x) = a \cdot e^{-x} + 3\) und \(a \in \mathbb R \backslash \{0\}\).

    Zeigen Sie, dass \(f'_a(0) = -a\) gilt.

    (1 BE)

  • Bestimmen Sie einen Term der ersten Ableitungsfunktion \(f'\) von \(f\).

    (zur Kontrolle: \(f'(x) = \left( 1 - x^2 \right) \cdot e^{-\frac{1}{2}x^2 + \frac{1}{2}}\))

    (2 BE)

  • Überprüfen Sie rechnerisch, ob das Fenster bei seiner Drehung am Möbelstück anstoßen kann.

    (5 BE)

  • Zeigen Sie, dass dieser Abstand mit der minimalen Entfernung des Hubschraubers vom Mittelpunkt des Grundstücks übereinstimmt, der im Modell durch den Punkt \(M(-40|30|30)\) dargestellt wird.

    (5 BE)

  • Geben Sie zu den Funktionstermen jeweils den maximalen Definitionsbereich sowie einen Term der Ableitungsfunktion an.

    \[f(x)= \ln(x + 3)\]

    (2 BE)

  • Geben Sie zu den Funktionstermen jeweils den maximalen Definitionsbereich sowie einen Term der Ableitungsfunktion an.

    \[g(x)= \frac{3}{x^2 - 1}\]

    (3 BE)

  • Bestimmen Sie rechnerisch die Koordinaten desjenigen Graphenpunkts \(Q_E(x_E|y_E)\), der von \(P\) den kleinsten Abstand hat. Tragen Sie \(Q_E\) in Abbildung 1 ein.

    (zur Kontrolle: \(x_E = 1\))

    (7 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f : x \mapsto 6 \cdot e^{-0{,}5x} + x\). Der Graph von \(f\) wird mit \(G_f\) bezeichnet.

     

    Untersuchen Sie das Monotonie- und das Krümmungsverhalten von \(G_f\). Bestimmen Sie Lage und Art des Extrempunkts \(E(x_E|y_E)\) von \(G_f\).

    (zur Kontrolle: \(x_E = 2 \cdot \ln 3; \enspace f''(x) = 1{,}5 \cdot e^{-0{,}5x}\))

    (10 BE)

  • Weisen Sie nach, dass die Verbindungsstrecke \([PQ_E]\) und die Tangente an \(G_f\) im Punkt \(Q_E\) senkrecht zueinander sind.

    (5 BE)

  • Bestimmen Sie den Term der Ableitung von \(f\).

    (2 BE)

  • Gegeben ist die Schar der Funktionen \(f_a : x \mapsto 6 \cdot e^{-0{,}5x} - a \cdot x\) mit \(a \in \mathbb R^+\) und Definitionsmenge \(\mathbb R\).

     

    Weisen Sie nach, dass die Graphen aller Funktionen der Schar die \(y\)-Achse im selben Punkt schneiden und in \(\mathbb R\) streng monoton fallend sind. Zeigen Sie, dass \(\lim \limits_{x \, \to \, +\infty} f_a(x) = -\infty\) gilt.

    (5 BE)

  • Gegeben ist die Funktion \(\displaystyle f : x \mapsto \frac{2x + 3}{4x + 5}\) mit maximaler Definitionsmenge \(D\). Geben Sie \(D\) an und ermitteln Sie einen möglichst einfachen Funktionsterm für die Ableitung \(f'\) von \(f\).

    (4 BE)

  • Bestimmen Sie die Gleichung der Tangente an \(G_f\) im Punkt \((0|6)\). Skizzieren Sie \(G_f\) unter Verwendung der bisherigen Ergebnisse in ein geeignet anzulegendes Koordinatensystem.

    (6 BE)

Seite 2 von 2