Mathematik Abitur Bayern 2019

  • Das Baumdiagramm in Abbildung 2 gehört zu einem Zufallsexperiment mit den stochastisch unabhängigen Ereignissen \(A\) und \(B\). Bestimmen Sie die Wahrscheinlichkeit des Ereignisses \(B\).

    Abbildung 2 Aufgabe 3 Stochastik 2 Mathematik Abitur Bayern 2019 AAbb. 2

     

    (3 BE)

  • Gegeben ist ein Rechteck \(ABCD\) mit den Eckpunkten \(A(5|-4|-3)\), \(B(5|4|3)\), \(C(0|4|3)\) und \(D\).

    Ermitteln Sie die Koordinaten von \(D\) und geben Sie die Koordinaten des Mittelpunkts \(M\) der Strecke \([AC]\) an.

    (3 BE)

  • Begründen Sie, dass die Dreiecke \(BCM\) und \(ABM\) den gleichen Flächeninhalt besitzen, ohne diesen zu berechnen.

    (2 BE)

  • Die Ebene \(E \colon 3x_{1} + 2x_{2} + 2x_{3} = 6\) enthält einen Punkt, dessen drei Koordinaten übereinstimmen. Bestimmen Sie diese Koordinaten.

    (2 BE)

  • Begründen Sie, dass die folgende Aussage richtig ist: Es gibt unendlich viele Ebenen, die keinen Punkt enthalten, dessen drei Koordinaten übereinstimmen.

    (3 BE)

  • Gegeben sind die beiden Kugeln \(k_{1}\) mit Mittelpunkt \(M_{1}(1|2|3)\) und Radius \(5\) sowie \(k_{2}\) mit Mittelpunkt \(M_{2}(-3|-2|1)\) und Radius \(5\).

    Zeigen Sie, dass sich \(k_{1}\) und \(k_{2}\) schneiden.

    (2 BE)

  • Die Schnittfigur von \(k_{1}\) und \(k_{2}\) ist ein Kreis. Bestimmen Sie die Koordinaten des Mittelpunkts und den Radius dieses Kreises.

    (3 BE)

  • Die Ebene \(E \colon 3x_{1} + 2x_{2} + 2x_{3} = 6\) enthält einen Punkt, dessen drei Koordinaten übereinstimmen. Bestimmen Sie diese Koordinaten.

    (2 BE)

  • Begründen Sie, dass die folgende Aussage richtig ist: Es gibt unendlich viele Ebenen, die keinen Punkt enthalten, dessen drei Koordinaten übereinstimmen.

    (3 BE)

  • Geben ist die Funktion \(f \colon x \mapsto 2 - \ln{(x - 1)}\) mit maximalem Definitionsbereich \(D_{f}\). Der Graph von \(f\) wird mit \(G_{f}\) bezeichnet.

    Zeigen Sie, dass \(D_{f} = \; ]1;+\infty[\) ist, und geben Sie das Verhalten von \(f\) an den Grenzen des Definitionsbereichs an.

    (3 BE)

  • Beschreiben Sie, wie \(G_{f}\) schrittweise aus dem Graphen der in \(\mathbb R^{+}\) definierten Funktion \(x \mapsto \ln{x}\) hervorgeht. Erklären Sie damit das Monotonieverhalten von \(G_{f}\).

    (5 BE)

  • Zeigen Sie, dass \(F \colon x \mapsto 3x - (x - 1) \cdot \ln{(x - 1)}\) mit Definitionsbereich \(D_{f} = \; ]1; +\infty[\) eine Stammfunktion von \(f\) ist, und bestimmen Sie den Term der Stammfunktion von \(f\), die bei \(x = 2\) eine Nullstelle hat.

    (4 BE)

  • Abbildung 1 zeigt ein Hinderniselement in einem Skate-Park.

    Abbildung 1 Aufgabe 2 Analysis 1 Mathematik Abitur Bayern 2019 BAbb. 1

    Die Auffahrt des symmetrischen Hinderniselements geht in ein horizontal verlaufendes Plateau über, an das sich die Abfahrt anschließt. Die vordere und die hintere Seitenfläche verlaufen senkrecht zum horizontalen Untergrund. Um die vordere Seitenfläche mathematisch beschreiben zu können, wird ein kartesisches Koordinatensystem so gewählt, dass die \(x\)-Achse die untere Begrenzung und die \(y\)-Achse die Symmetrieachse der betrachteten Fläche darstellt. Das Plateau erstreckt sich im Modell im Bereich \(-2 \leq x \leq 2\). Die Profillinie der Abfahrt wird für \(2 \leq x \leq 8\) durch den Graphen der in Aufgabe 1 untersuchten Funktion f beschrieben (vgl. Abbildung 2). Dabei entspricht eine Längeneinheit im Koordinatensystem einem Meter in der Realität.

    Abbildung 2 Aufgabe 2 Analysis 1 Mathematik Abitur Bayern 2019 BAbb. 2

    Erläutern Sie die Bedeutung des Funktionswerts \(f(2)\) im Sachzusammenhang und geben Sie den Term der Funktion \(q\) an, deren Graph \(G_{q}\) für \(-8 \leq x \leq -2\) die Profillinie der Auffahrt im Modell beschreibt. 

    (2 BE)

  • Berechnen Sie die Stelle \(x_{m}\) im Intervall \([2;8]\), an der die lokale Änderungsrate von \(f\) gleich der mittleren Änderungsrate in diesem Intervall ist.

    (5 BE)

  • Der in Aufgabe 2b rechnerisch ermittelte Wert \(x_{m}\) könnte alternativ auch ohne Rechnung näherungsweise mithilfe von Abbildung 2 bestimmt werden. Erläutern Sie, wie Sie dabei vorgehen würden.

    (3 BE)

  • Berechnen Sie auf der Grundlage des Modells die Größe des Winkels \(\alpha\), den das Plateau und die Fahrbahn an der Kante zur Abfahrt einschließen (vgl. Abbildung 2).

    (2 BE)

  • Die vordere Seitenfläche des Hinderniselements wird in Teilbereichen der Auf- und Abfahrt als Werbefläche verwendet (vgl. Abbildung 1). Im Modell handelt es sich um zwei Flächenstücke, nämlich um die Fläche zwischen \(G_{f}\) und der \(x\)-Achse im Bereich \(2 \leq x \leq 6\) sowie die dazu symmetrische Fläche im II-Quadranten. Berechnen Sie unter Verwendung der in Aufgabe 1d angegebenen Stammfunktion \(F\), wie viele Quadratmeter als Werbefläche zur Verfügung stehen.

    (3 BE)

  • Betrachtet wird die Schar der in \(\mathbb R\) definierten Funktionen \(g_{k} \colon x \mapsto kx^{3} + 3 \cdot (k + 1)x^{2} + 9x\) mit \(k \in \mathbb R \backslash \{0\}\) und den zugehörigen Graphen \(G_{k}\). Für jedes \(k\) besitzt der Graph \(G_{k}\) genau einen Wendepunkt \(W_{k}\).

    Geben Sie das Verhalten von \(g_{k}\) an den Grenzen des Definitionsbereichs in Abhängigkeit von \(k\) an.

    (2 BE)

  • Bestimmen Sie die \(x\)-Koordinate von \(W_{k}\) in Abhängigkeit von \(k\).

    (zur Kontrolle: \(x = -\frac{1}{k} - 1\))

    (3 BE)

  • Bestimmen Sie den Wert von \(k\) so, dass der zugehörige Wendepunkt \(W_{k}\) auf der \(y\)-Achse liegt. Zeigen Sie, dass in diesem Fall der Punkt \(W_{k}\) im Koordinatenursprung liegt und die Wendetangente, d. h. die Tangente an \(G_{k}\) im Punkt \(W_{k}\), die Steigung \(9\) hat.

    (4 BE)

Seite 2 von 4