Mathematik Abitur Bayern 2019

  • Für den in Aufgabe 3c bestimmten Wert von \(k\) zeigt Abbildung 3 den zugehörigen Graphen mit seiner Wendetangente. In diesem Koordinatensystem sind die beiden Achsen unterschiedlich skaliert.

    Bestimmen Sie die fehlenden Zahlenwerte an den Markierungsstrichen der \(y\)-Achse mithilfe eines geeigneten Steigungsdreiecks an der Wendetangente und tragen Sie die Zahlenwerte in Abbildung 3 ein.

    Abbildung 3 Aufgabe 3d Analysis 1 Mathematik Abitur Bayern 2019 BAbb. 3

    (2 BE)

  • Bestimmen Sie rechnerisch Lage und Art des Extrempunkts von \(G_{f}\).

    (5 BE)

  • Begründen Sie, dass \(G_{f}\) für \(x < 0\) nur im III. Quadranten verläuft, und zeichnen Sie in die Abbildung den darin fehlenden Teil von \(G_{f}\) ein. Berechnen Sie dazu \(f(-3)\) und drei weitere geeignete Funktionswerte von \(f\).

    (4 BE)

  • Gegeben ist ferner die in \(]-1;+\infty[\) definierte Funktion \(F \colon x \mapsto 4 \cdot \ln{(x + 1)} + \dfrac{4}{x + 1}\).

    Zeigen Sie, dass \(F\) für \(x > -1\) eine Stammfunktion von \(f\) ist.

    (3 BE)

  • Ein Pharmaunternehmen führt eine Studie zur Wirksamkeit und Verträglichkeit eines neu entwickelten Medikaments durch. Wenn das Medikament einmalig in Form einer Tablette eingenommen wird, kann die zeitliche Entwicklung der Konzentration des Wirkstoffs im Blut des Patienten modellhaft durch die betrachtete Funktion \(f\) für \(x \in [0;9]\) beschrieben werden. Dabei steht \(x\) für die Zeit in Stunden seit der Einnahme der Tablette und \(f(x)\) für die Konzentration des Wirkstoffs im Blut des Patienten (im Weiteren kurz als Wirkstoffkonzentration bezeichnet) in Milligramm pro Liter \(\big( \frac{\sf{mg}}{\sf{l}}\big)\).

    Die folgenden Aufgaben e bis i sollen auf der Grundlage dieses Modells bearbeitet werden.

    Berechnen Sie die Wirkstoffkonzentration 30 Minuten nach Einnahme der Tablette und geben Sie die maximal auftretende Wirkstoffkonzentration an.

    (2 BE)

  • An der Stelle \(x = 2\) hat \(G_{f}\) einen Wendepunkt. Beschreiben Sie, wie man rechnerisch vorgehen könnte, um dies zu begründen. Geben Sie die Bedeutung der \(x\)-Koordinate des Wendepunkts im Sachzusammenhang an.

    (3 BE)

  • In der Pharmakologie wird das in positive \(x\)-Richtung unbegrenzte Flächenstück, das sich im I. Quadranten zwischen \(G_{f}\) und der \(x\)-Achse befindet, als AUC (area under the curve") bezeichnet. Nur dann, wenn diesem Flächenstück ein endlicher Flächeninhalt zugeordnet werden kann, kann die betrachtete Funktion \(f\) die zeitliche Entwicklung der Wirkstoffkonzentration auch für große Zeitwerte \(x\) realistisch beschreiben.

    Die \(x\)-Achse, \(G_{f}\) und die Gerade mit der Gleichung \(x = b\) mit \(b \in \mathbb R^{+}\) schließen im I. Quadranten ein Flächenstück mit dem Inhalt \(A(b)\) ein. Bestimmen Sie mithilfe der in Aufgabe d angegebenen Stammfunktion \(F\) einen Term für \(A(b)\) und beurteilen Sie unter Verwendung dieses Terms, ob die Funktion \(f\) auch für große Zeitwerte eine realistische Modellierung der zeitlichen Entwicklung der Wirkstoffkonzentration darstellt.

    (4 BE)

  • Das Medikament zeigt die gewünschte Wirkung erst ab einer bestimmten Wirkstoffkonzentration. Daher soll der Patient nach der ersten Tablette des Medikaments eine zweite identisch wirkende Tablette einnehmen, noch bevor die Konzentration des Wirkstoffs im Blut unter 0,75\(\frac{\sf{mg}}{\sf{l}}\) fällt. Nach der Einnahme der zweiten Tablette erhöht sich die Wirkstoffkonzentration um die durch diese Tablette verursachte Konzentration des Wirkstoffs im Blut.

    Ermitteln Sie durch Rechnung den spätesten Zeitpunkt, zu dem die zweite Tablette eingenommen werden soll.

    (4 BE)

  • Wird die zweite Tablette zweieinhalb Stunden nach der ersten Tablette eingenommen, so kann die Wirkstoffkonzentration für \(x \in [2{,}5;9]\) mit einem der folgenden Terme beschrieben werden. Wählen Sie den passenden Term aus und begründen Sie Ihre Wahl.

    (A) \(\quad f(x) + f(x + 2{,}5)\)

    (B) \(\quad f(x) + f(x - 2{,}5)\)

    (C) \(\quad f(x - 2{,}5) + f(2{,}5)\)

    (D) \(\quad f(x) - f(x - 2{,}5)\)

    (3 BE)

  • Verabreicht man das Medikament nicht in Form von Tabletten, sondern mittels einer Dauerinfusion, so wird der Wirkstoff langsam und kontinuierlich zugeführt. Die in \(\mathbb R\) definierte Funktion \(k \colon x \mapsto \dfrac{3 \cdot e^{2x}}{e^{2x} + 1} - 1{,}5\) beschreibt für \(x \geq 0\) modellhaft die zeitliche Entwicklung der Wirkstoffkonzentration während einer Dauerinfusion. Dabei ist \(x\) die seit Anlegen der Dauerinfusion vergangene Zeit in Stunden und \(k(x)\) die Wirkstoffkonzentration in \(\frac{\sf{mg}}{\sf{l}}\).

    Begründen Sie, dass der Graph von \(k\) streng monoton steigend ist.

    (zur Kontrolle: \(k'(x) = \dfrac{6e^{2x}}{\left( e^{2x} + 1 \right)^{2}}\))

    (4 BE)

  • Bei Dauerinfusionen dieses Medikaments muss die Wirkstoffkonzentration spätestens 60 Minuten nach Beginn der Infusion dauerhaft größer als 0,75\(\frac{\sf{mg}}{\sf{l}}\) sein und stets mindestens 25 % unter der gesundheitsschädlichen Grenze von 2\(\frac{\sf{mg}}{\sf{l}}\) liegen. Ermitteln Sie \(\lim \limits_{x\,\to\,+\infty} k(x)\) und beurteilen Sie beispielsweise unter Verwendung der bisherigen Ergebnisse, ob gemäß der Modellierung diese beiden Bedingungen erfüllt sind.

    (5 BE)

  • Ein Unternehmen organisiert Fahrten mit einem Ausflugsschiff, das Platz für 60 Fahrgäste bietet.

    Betrachtet wird eine Fahrt, bei der das Schiff voll besetzt ist. Unter den Fahrgästen befinden sich Erwachsene, Jugendliche und Kinder. Die Hälfte der Fahrgäste isst während der Fahrt ein Eis, von den Erwachsenen nur jeder Dritte, von den Jugendlichen und Kindern 75 %. Berechnen Sie, wie viele Erwachsene an der Fahrt teilnehmen.

    (3 BE)

  • Möchte man an einer Fahrt teilnehmen, so muss man dafür im Voraus eine Reservierung vornehmen, ohne dabei schon den Fahrpreis bezahlen zu müssen. Erfahrungsgemäß erscheinen von den Personen mit Reservierung einige nicht zur Fahrt. Für die 60 zur Verfügung stehenden Plätze lässt das Unternehmen deshalb bis zu 64 Reservierungen zu. Es soll davon ausgegangen werden, dass für jede Fahrt tatsächlich 64 Reservierungen vorgenommen werden. Erscheinen mehr als 60 Personen mit Reservierung zur Fahrt, so können nur 60 von ihnen daran teilnehmen; die übrigen müssen abgewiesen werden.
    Die Zufallsgröße \(X\) beschreibt die Anzahl der Personen mit Reservierung, die nicht zur Fahrt erscheinen. Vereinfachend soll angenommen werden, dass \(X\) binomialverteilt ist, wobei die Wahrscheinlichkeit dafür, dass eine zufällig ausgewählte Person mit Reservierung nicht zur Fahrt erscheint, 10 % beträgt. Die auf der nächsten Seite abgebildete Tabelle ergänzt das zugelassene Tafelwerk (vgl. Seitenende).

    Geben Sie einen Grund an, dass es sich bei der Annahme, die Zufallsgröße \(X\) ist binomialverteilt, im Sachzusammenhang um eine Vereinfachung handelt.

    (1 BE)

  • Bestimmen Sie die Wahrscheinlichkeit dafür, dass keine Person mit Reservierung abgewiesen werden muss.

    (3 BE)

  • Für das Unternehmen wäre es hilfreich, wenn die Wahrscheinlichkeit dafür, mindestens eine Person mit Reservierung abweisen zu müssen, höchstens ein Prozent wäre. Dazu müsste die Wahrscheinlichkeit dafür, dass eine zufällig ausgewählte Person mit Reservierung nicht zur Fahrt erscheint, mindestens einen bestimmten Wert haben. Ermitteln Sie diesen Wert auf ganze Prozent genau.

    (3 BE)

  • Das Unternehmen richtet ein Online-Portal zur Reservierung ein und vermutet, dass dadurch der Anteil der Personen mit Reservierung, die zur jeweiligen Fahrt nicht erscheinen, zunehmen könnte. Als Grundlage für die Entscheidung darüber, ob pro Fahrt künftig mehr als 64 Reservierungen zugelassen werden, soll die Nullhypothese „Die Wahrscheinlichkeit dafür, dass eine zufällig ausgewählte Person mit Reservierung nicht zur Fahrt erscheint, beträgt höchstens 10 %." mithilfe einer Stichprobe von 200 Personen mit Reservierung auf einem Signifikanzniveau von 5 % getestet werden. Vor der Durchführung des Tests wird festgelegt, die Anzahl der für eine Fahrt möglichen Reservierungen nur dann zu erhöhen, wenn die Nullhypothese aufgrund des Testergebnisses abgelehnt werden müsste.

    Ermitteln Sie die zugehörige Entscheidungsregel.

    (5 BE)

  • Entscheiden Sie, ob bei der Wahl der Nullhypothese eher das Interesse, dass weniger Plätze frei bleiben sollen, oder das Interesse, dass nicht mehr Personen mit Reservierung abgewiesen werden müssen, im Vordergrund stand. Begründen Sie Ihre Entscheidung.

    (3 BE)

  • Beschreiben Sie den zugehörigen Fehler zweiter Art sowie die daraus resultierende Konsequenz im Sachzusammenhang.

    (2 BE)

  • Jeder sechste Besucher eines Volksfests trägt ein Lebkuchenherz um den Hals. Während der Dauer des Volksfests wird 25-mal ein Besucher zufällig ausgewählt. Die Zufallsgröße \(X\) beschreibt die Anzahl der ausgewählten Besucher, die ein Lebkuchenherz tragen.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass unter den ausgewählten Besuchern höchstens ein Besucher ein Lebkuchenherz trägt.

    (2 BE)

  • Beschreiben Sie im Sachzusammenhang ein Ereignis, dessen Wahrscheinlichkeit mit dem Term \(\sum \limits_{i\,=\,5}^{8}B\left( 25;\frac{1}{6};i \right)\) berechnet werden kann.

    (2 BE)

Seite 3 von 4