Mathematik Abitur Bayern 2021

  • Es wird das Flächenstück zwischen \(G_{g}\) und der \(x\)-Achse im Bereich \(-\ln{3} \leq x \leq b\) mit \(b \in \mathbb R^{+}\) betrachtet. Bestimmen Sie den Wert von \(b\) so. dass die \(y\)-Achse dieses Flächenstück halbiert.

    (6 BE)

  • An einem Samstagvormittag kommen nacheinander vier Familien zum Eingangsbereich eines Freizeitparks. Jede der vier Familien bezahlt an einer der sechs Kassen, wobei davon ausgegangen werden soll, dass jede Kasse mit der gleichen Wahrscheinlichkeit gewählt wird. Beschreiben Sie im Sachzusammenhang zwei Ereignisse \(A\) und \(B\), deren Wahrscheinlichkeiten sich mit den folgenden Termen berechnen lassen:

    \[P(A) = \frac{6 \cdot 5 \cdot 4 \cdot 3}{6^{4}}; \enspace P(B) = \frac{6}{6^{4}}\]

    (3 BE)

  • Im Eingangsbereich des Freizeitparks können Bollerwagen ausgeliehen werden. Erfahrungsgemäß nutzen 15 % der Familien dieses Angebot. Die Zufallsgröße \(X\) beschreibt die Anzahl der Bollerwagen, die von den ersten 200 Familien, die an einem Tag den Freizeitpark betreten, entliehen werden. Im Folgenden wird davon ausgegangen, dass eine Familie höchstens einen Bollerwagen ausleiht und dass die Zufallsgröße \(X\) binomialverteilt ist.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass mindestens 25 Bollerwaagen ausgeliehen werden. 

    (2 BE)

  • Bestimmen Sie die Wahrscheinlichkeit dafür, dass die fünfte Familie die erste ist, die einen Bollerwagen ausleiht.

    (2 BE)

  • Ermitteln Sie unter Zuhilfenahme des Tafelwerks den kleinsten symmetrischen um den Erwartungswert liegenden Bereich, in dem die Werte der Zufallsgröße \(X\) mit einer Wahrscheinlichkeit von mindestens 75 % liegen.

    (5 BE)

  • Abbildung Aufgabe 3 Stochastik 1 Prüfungsteil B Mathematik Abitur Bayern 2021

    Der Freizeitpark veranstaltet ein Glücksspiel, bei dem Eintrittskarten für den Freizeitpark gewonnen werden können. Zu Beginn des Spiels wirft man einen Würfel, dessen Seiten mit den Zahlen 1 bis 6 durchnummeriert sind. Erzielt man dabei die Zahl 6, darf man anschließend einmal an einem Glücksrad mit drei Sektoren drehen (vgl. schematische Abbildung). Wird Sektor K erzielt, gewinnt man eine Kinderkarte im Wert von 28 Euro, bei Sektor E eine Erwachsenenkarte im Wert von 36 Euro. Bei Sektor N geht man leer aus. Der Mittelpunktswinkel des Sektors N beträgt 160°. Die Größen der Sektoren K und E sind so gewählt, dass pro Spiel der Gewinn im Mittel drei Euro beträgt. Bestimmen Sie die Größe der Mittelpunktswinkel der Sektoren K und E.

    (6 BE)

  • Am Ausgang des Freizeitparks gibt es einen Automaten, der auf Knopfdruck einen Anstecker mit einem lustigen Motiv bedruckt und anschließend ausgibt. Für den Druck wird aus \(n\) verschiedenen Motiven eines zufällig ausgewählt, wobei jedes Motiv die gleiche Wahrscheinlichkeit hat.

    Ein Kind holt sich drei Anstecker aus dem Automaten.

    Bestimmen Sie für den Fall \(n = 5\) die Wahrscheinlichkeit dafür, dass nicht alle drei Anstecker dasselbe Motiv haben.

    (2 BE)

  • Begründen Sie, dass die Wahrscheinlichkeit dafür, dass sich drei verschiedene Motive auf den Ansteckern befinden, den Wert \(\dfrac{(n - 1) \cdot (n - 2)}{n^{2}}\) hat.

    (2 BE)

  • Bestimmen Sie, wie groß \(n\) mindestens sein muss, damit die Wahrscheinlichkeit dafür, dass sich drei verschiedene Motive auf den Ansteckern befinden, größer als 90 % ist.

     (3 BE)

  • Ein Süßwarenunternehmen stellt verschiedene Sorten Fruchtgummis her.

    Luisa nimmt an einer Betriebsbesichtigung des Unternehmens teil. Zu Beginn der Führung bekommt sie ein Tütchen mit zehn Gummibärchen, von denen fünf weiß. zwei rot und drei grün sind. Luisa öffnet das Tütchen und nimmt, ohne hinzusehen, drei Gummibärchen heraus. Berechnen Sie die Wahrscheinlichkeit dafür, dass die drei Gummibärchen die gleiche Farbe haben.

    (3 BE)

  • Vor dem Verpacken werden die verschiedenfarbigen Gummibärchen in großen Behältern gemischt, wobei der Anteil der roten Gummibärchen 25 % beträgt. Ein Verpackungsautomat füllt jeweils 50 Gummibärchen aus einem der großen Behälter in eine Tüte.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass in einer zufällig ausgewählten Tüte mehr als ein Drittel der Gummibärchen rot ist.

    (3 BE)

  • Um sicherzustellen, dass jeweils genau 50 Gummibärchen in eine Tüte gelangen, fallen diese einzeln nacheinander aus einer Öffnung des Behälters in den Verpackungsautomaten. Beschreiben Sie im Sachzusammenhang ein Ereignis, dessen Wahrscheinlichkeit mit dem folgenden Term berechnet werden kann:

    \[\sum \limits_{k\,=\,0}^{3}(0{,}75^{k} \cdot 0{,}25)\]

    (2 BE)

  • Ermitteln Sie, wie groß der Anteil der gelben Gummibärchen in der Produktion mindestens sein muss, damit in einer zufällig ausgewählten Tüte mit einer Wahrscheinlichkeit von mindestens 95 % mindestens ein gelbes Gummibärchen ist.

    (4 BE)

  • Das Süßwarenunternehmen produziert auch zuckerreduzierte und vegane Fruchtgummis und bringt diese in entsprechend gekennzeichneten Tüten in den Handel.

    Der Anteil der nicht als vegan gekennzeichneten Tüten ist dreimal so groß wie der Anteil der Tüten, die als vegan gekennzeichnet sind. 42 % der Tüten, die als vegan gekennzeichnet sind, sind zusätzlich auch als zuckerreduziert gekennzeichnet. Insgesamt sind 63 % der Tüten weder als vegan noch als zuckerreduziert gekennzeichnet.

    Betrachtet werden folgende Ereignisse:

    \(V\): „Eine zufällig ausgewählte Tüte ist als vegan gekennzeichnet."

    \(R\): „Eine zufällig ausgewählte Tüte ist als zuckerreduziert gekennzeichnet."

    Bestimmen Sie die Wahrscheinlichkeit des Ereignisses \(\overline{R}\).

    (3 BE)

  • Bestimmen Sie die Wahrscheinlichkeit \(P_{\overline{V}}(R)\).

    (3 BE)

  • Beschreiben Sie die Bedeutung des Terms \(1 - P_{\overline{V}}(R)\) im Sachzusammenhang.

    (2 BE)

  • Bei einer Werbeaktion werden den Fruchtgummitüten Rubbellose beigelegt. Beim Freirubbeln werden auf dem Los bis zu drei Goldäpfel sichtbar. Die Zufallsgröße \(X\) beschreibt die Anzahl der Goldäpfel, die beim Freirubbeln sichtbar werden. Die Tabelle zeigt die Wahrscheinlichkeitsverteilung von \(X\).

    Tabelle Aufgabe 4 Stochastik 2 Prüfungsteil B Mathematik Abitur Bayern 2021

    Die Zufallsgröße \(X\) hat den Erwartungswert 1. Bestimmen Sie die Wahrscheinlichkeiten \(p_{0}\) und \(p_{1}\) und berechnen Sie die Varianz von \(X\).

    (3 BE)

  • Ohne Kenntnis des Erwartungswerts ist die Varianz in der Regel nicht aussagekräftig. Daher wird für den Vergleich verschiedener Zufallsgrößen oft der Quotient aus der Standardabweichung und dem Erwartungswert betrachtet, der als relative Standardabweichung bezeichnet wird.

    Die Zufallsgröße \(Y_{n}\) beschreibt die Anzahl der Goldäpfel, die beim Freirubbeln von \(n\) Losen sichtbar werden. Es gilt \(E(Y_{n}) = n\) und \(Var(Y_{n}) = n\). Bestimmen Sie den Wert von \(n\), für den die relative Standardabweichung 5 % beträgt.

    (2 BE)

  • Die Punkte \(A(6|0|4)\), \(B(0|6|4)\), \(C(-6|0|4)\) und \(D\) liegen in der Ebene \(E\) und bilden die Eckpunkte der quadratischen Grundfläche einer Pyramide \(ABCDS\) mit der Spitze \(S(0|0|1)\). \(A\), \(B\) und \(S\) liegen in der Ebene \(F\).

    Zeigen Sie rechnerisch, dass das Dreieck \(ABS\) gleichschenklig ist. Geben Sie die Koordinaten des Punkts \(D\) an und beschreiben Sie die besondere Lage der Ebene \(E\) im Koordinatensystem.

    (4 BE)

  • Bestimmen Sie die Gleichung der Ebene \(F\) in Koordinatenform.

    (zur Kontrolle: \(F \colon x_{1} + x_{2} - 2x_{3} + 2 = 0\))

    (3 BE)

Seite 3 von 4