Mathematik Abitur Bayern 2023

  • Geben Sie den Zeitpunkt an, zu dem der Stau am längsten ist. Begründen Sie Ihre Angabe.

    (2 BE) 

  • Gegeben ist die in \(\mathbb R_0^+\) definierte Funktion \(g \colon x \mapsto \sqrt{x} + 1\).

    Bestimmen Sie eine Gleichung der Tangente an den Graphen von \(g\) im Punkt \((1|g(1))\).

    (3 BE) 

  • Ermitteln Sie diejenige Stelle \(x \in D\), für die \(f'(x) = 2\) gilt.

    (3 BE) 

  • Gegeben ist die in \(\mathbb R \backslash \{0\}\) definierte Funktion \(g \colon x \mapsto \dfrac{1}{x^2} - 1\).

    Geben Sie eine Gleichung der waagrechten Asymptote des Graphen von \(g\) sowie die Wertemenge von \(g\) an.

    (2 BE) 

  • Berechnen Sie den Wert des Integrals \(\displaystyle \int_{\frac{1}{2}}^{2}g(x)dx\).

    (3 BE) 

  • Bestimmen Sie eine Gleichung von \(L\) in Koordinatenform sowie die Größe \(\varphi\) des Winkels, den \(L\) mit der \(x_1x_2\)-Ebene einschließt.

    (zur Kontrolle: \(x_1+x_2+x_3-19= 0; \enspace \varphi \approx 55^{\circ}\))

    (6 BE) 

  • Tatsächlich ist der Anteil der Beschäftigten mit einem Jobticket an beiden Standorten unterschiedlich; am Standort B besitzt nur die Hälfte der Beschäftigten ein Jobticket. Berechnen Sie die Wahrscheinlichkeit dafür, dass ein zufällig ausgewählter Beschäftigter des Autozulieferers, der ein Jobticket besitzt, am Standort A arbeitet.

    (3 BE) 

  • Die Graphen von \(h_k\) und \(h'_k\) werden in der Abbildung 3 für \(k = 4\) beispielhaft für gerade Werte von \(k\) gezeigt, in der Abbildung 4 für \(k = 5\) beispielhaft für ungerade Werte von \(k\). Für \(k \geq 4\) werden die Punkte \(P(4|h_k(4))\), \(Q(4|h'_k(4))\), \(R(2|h_k(2))\) und \(S(2|h'_k(2))\) betrachtet. Diese Punkte sind jeweils Eckpunkte eines Vierecks.

    Abbildung 3 Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2023Abb. 3

    Abbildung 4 Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2023Abb. 4

    Begründen Sie dass jedes dieser Vierecke ein Trapez ist, und zeigen Sie, dass die folgende Aussage richtig ist:

    Für jeden geraden Wert von \(k\) mit \(k \geq 4\) stimmen der Flächeninhalt des Trapezes für \(k\) und der Flächeninhalt des Trapezes für \(k + 1\) überein.

    (7 BE) 

  • Der Graph einer Stammfunktion von \(g\) verläuft durch \(P\). Skizzieren Sie diesen Graphen in Abbildung 2.

    (3 BE) 

  • Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{e^x}{e^x - 2}\) mit maximalem Definitionsbereich \(D\).

    Bestimmen Sie \(D\) und geben Sie die Koordinaten des Schnittpunkts des Graphen von \(f\) mit der \(y\)-Achse an.

    (3 BE) 

  • Geben Sie einen Term der ersten Ableitungsfunktion von \(f\) an.

    (2 BE) 

  • Gegeben ist die Funktion \(f \colon x \mapsto \ln{(x - 3)}\) mit maximaler Definitionsmenge \(D\) und Ableitungsfunktion \(f'\).

    Geben Sie \(D\) sowie die Nullstelle von \(f\) an

    (2 BE) 

  • Der Körper wird so um die Gerade \(AB\) gedreht, dass der mit \(D\) bezeichnete Eckpunkt nach der Drehung in der \(x_1x_2\)-Ebene liegt und dabei eine positive \(x_2\)-Koordinate hat. Die folgenden Rechnungen liefern die Lösung einer Aufgabe im Zusammenhang mit der Drehung:

    \(\begin{pmatrix} 6 \\ -3 \\ 0 \end{pmatrix} \circ \left[ \begin{pmatrix} 0 \\ 6 \\ 0 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 6 \\ -3 \\ 0 \end{pmatrix} - \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix} \right] = 0 \; \Leftrightarrow \; \lambda = 0{,}8\), d. h. \(S(4{,}8|3{,}6|0)\)

    \(\overrightarrow{T} = \overrightarrow{S} + \vert \overrightarrow{CS} \vert \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\)

    Formulieren Sie eine passende Aufgabenstellung und geben Sie die Bedeutung von \(S\) an.

    (3 BE) 

  • Gegeben sind die Punkte \(A(19|0|0)\), \(B(0|19|0)\), \(E(12|0|7)\) und \(F(0|12|7)\) (vgl. Abbildung 1). Das Viereck \(ABFE\) liegt in der Ebene \(L\).

    Weisen Sie nach, dass das Viereck \(ABFE\) ein Trapez mit zwei gleich langen Seiten ist.

    (3 BE) 

  • Zeichnen Sie die Pyramide \(EFGHS_{15}\) in Abbildung 1 ein. Die Seitenfläche \(EFS_{15}\) und die Grundfläche \(EFGH\) dieser Pyramide schließen einen Winkel ein. Begründen Sie ohne weitere Rechnung, dass die Größe dieses Winkels kleiner als 45° ist; verwenden Sie dazu folgende Information:

    Für den Mittelpunkt \(M\) des Quadrats \(EFGH\) und den Punkt \(N\) mit \( \overrightarrow{N} = \dfrac{1}{2} \cdot (\overrightarrow{E} + \overrightarrow{F})\) gilt  \(\overline{MS_{15}} < \overline{MN}\).

    (4 BE) 

  • Die Sektoren des abgebildeten Glücksrads sind gleich groß und mit den Zahlen von 0 bis 9 durchnummeriert.

    Das Glücksrad wird zwanzigmal gedreht. Bestimmen Sie die Wahrscheinlichkeit der Ereignisse \(A\) und \(B\).

    \(A\): „Es wird genau siebenmal eine ungerade Zahl erzielt."

    \(B\): „Es wird mehr als siebenmal und höchstens zwölfmal eine ungerade Zahl erzielt."

    Glücksrad Stochastik 2 Prüfungsteil B Mathematik Abitur Bayern 2023

    (3 BE) 

  • Der Graph einer Stammfunktion von \(g\) verläuft durch \(P\). Skizzieren Sie diesen Graphen in Abbildung 2.

    (3 BE) 

  • Die vier Seiten eines regelmäßigen Tetraeders sind mit den Zahlen 1, 2, 3 und 4 durchnummeriert. Das Tetraeder wird fünfmal geworfen.

    Geben Sie im Sachzusammenhang ein Ereignis an, dessen Wahrscheinlichkeit mit dem Term \(\left( \dfrac{3}{4} \right)^5\) berechnet werden kann, und begründen Sie Ihre Angabe. 

    (2 BE) 

  • Geben Sie einen Term an, mit dem die Wahrscheinlichkeit dafür berechnet werden kann, dass jede Zahl mindestens einmal erzielt wird.

    (3 BE) 

  • In einen leeren Behälter werden drei Kugeln gelegt. Dabei wird die Farbe jeder Kugel durch Werfen eines Würfels festgelegt, dessen Seiten mit den Zahlen 1 bis 6 durchnummeriert sind: Wird die „1" oder die „2" erzielt, wird eine gelbe Kugel gewählt, sonst eine schwarze.

    Weisen Sie rechnerisch nach, dass die Wahrscheinlichkeit dafür, dass sich nun mindestens zwei schwarze Kugeln im Behälter befinden, \(\large{\frac{20}{27}}\) beträgt.

    (2 BE) 

Seite 2 von 4