Betrag eines Vektors

Teilaufgabe c

Die Kugel \(K\) mit dem Mittelpunkt \(M(-13|20|0)\) berührt die Ebene \(E\). Bestimmen Sie die Koordinaten des zugehörigen Berührpunkts \(F\) sowie den Kugelradius \(r\).

(zur Kontrolle: \(F(-5|4|2)\), \(r = 18\))

(6 BE)

Teilaufgabe b

Berechnen Sie die Größe des Neigungswinkels der Dachfläche gegenüber der Horizontalen.

(3 BE)

Teilaufgabe 1a

Gegeben sind die Punkte \(P(-2|3|0)\), \(R(2|-1|2)\) und \(Q(q|1|5)\) mit der reellen Zahl \(q\), wobei \(Q\) von \(P\) genauso weit entfernt ist wie von \(R\).

Bestimmen Sie \(q\).

(zur Kontrolle: \(q = -2\))

(3 BE)

Teilaufgabe a

Die Strecke \([PQ]\) mit den Eigenschaften \(P(8|-5|1)\) und \(Q\) ist Durchmesser einer Kugel mit Mittelpunkt \(M(5|-1|1)\).

Berechnen Sie die Koordinaten von \(Q\) und weisen Sie nach, dass der Punkt \(R(9|-1|4)\) auf der Kugel liegt.

(3 BE)

Teilaufgabe a

Die Abbildung zeigt den Würfel \(ABCDEFG\) mit \(A(0|0|0)\) und \(G(5|5|5)\) in einem kartesischen Koordinatensystem. Die Ebene \(T\) schneidet die Kanten des Würfels unter anderem in den Punkten \(I(5|0|1)\), \(J(2|5|0)\), \(K(0|5|2)\) und \(L(1|0|5)\).

Abbildung Geometrie 2 Mathematik Abitur Bayern 2019 B

Zeichnen Sie das Viereck \(IJKL\) in die Abbildung ein und zeigen Sie, dass es sich um ein Trapez handelt, bei dem zwei gegenüberliegende Seiten gleich lang sind.

(4 BE)

Teilaufgabe f

Aus energetischen Gründen soll der Abstand der beiden Stellen, an denen die beiden Bohrkanäle auf die wasserführende Gesteinsschicht treffen, mindestens 1500 m betragen. Entscheiden Sie auf der Grundlage des Modells, ob diese Bedingung für jeden möglichen zweiten Bohrkanal erfüllt wird.

(4 BE)

Teilaufgabe d

Der Bohrkanal wird geradlinig verlängert und verlässt die wasserführende Gesteinsschicht in einer Tiefe von 3600 m unter der Erdoberfläche. Die Austrittsstelle wird im Modell als Punkt \(R\) auf der Geraden \(PQ\) beschrieben. Bestimmen Sie die Koordinaten von \(R\) und ermitteln Sie die Dicke der wasserführenden Gesteinsschicht auf Meter gerundet.

(zur Kontrolle: \(x_{1}\)- und \(x_{2}\)-Koordinate von \(R\): \(1{,}04\))

(6 BE)

Teilaufgabe a

Eine Geothermieanlage fördert durch einen Bohrkanal heißes Wasser aus einer wasserführenden Gesteinsschicht an die Erdoberfläche. In einem Modell entspricht die \(x_{1}x_{2}\)-Ebene eines kartesischen Koordinatensystems der horizontal verlaufenden Erdoberfläche. Eine Längeneinheit im Koordinatensystem entspricht einem Kilometer in der Realität. Der Bohrkanal besteht aus zwei Abschnitten, die im Modell vereinfacht durch die Strecken \([AP]\) und \([PQ]\) mit den Punkten \(A(0|0|0)\), \(P(0|0|-1)\) und \(Q(1|1|-3{,}5)\) beschrieben werden (vgl. Abbildung).

Abbildung Geometrie 1 Mathematik Abitur Bayern 2019 B

Berechnen Sie auf der Grundlage des Modells die Gesamtlänge des Bohrkanals auf Meter gerundet.

(2 BE)

Teilaufgabe 1a

Gegeben sind die beiden Kugeln \(k_{1}\) mit Mittelpunkt \(M_{1}(1|2|3)\) und Radius \(5\) sowie \(k_{2}\) mit Mittelpunkt \(M_{2}(-3|-2|1)\) und Radius \(5\).

Zeigen Sie, dass sich \(k_{1}\) und \(k_{2}\) schneiden.

(2 BE)

Teilaufgabe e

Über ein Kletternetz kann man von einer Plattform zur anderen gelangen. Die vier Eckpunkte des Netzes sind an den beiden Pfählen befestigt. Einer der beiden unteren Eckpunkte befindet sich an Pfahl 1 auf der Höhe der zugehörigen Plattform, der andere untere Eckpunkt an Pfahl 2 oberhalb der Plattform 2. An jedem Pfahl beträgt der Abstand der beiden dort befestigten Eckpunkte des Netzes 1,80 m. das Netz ist so gespannt, dass davon ausgegangen werden kann, dass es die Form eines ebenen Vierecks hat.

Berechnen Sie den Flächeninhalt des Netzes und erläutern Sie Ihren Ansatz.

(3 BE)