Betrag eines Vektors

Teilaufgabe g

Es gibt genau eine Kugel, auf der alle acht Eckpunkte des Körpers liegen. Ermitteln Sie die Koordinaten des Mittelpunkts dieser Kugel.

(4 BE)

Teilaufgabe d

Auf der Strecke \([DE]\) gibt es einen Punkt \(K\), für den \(\overline{KE} = \overline{EF}\) gilt.

Bestimmen Sie die Koordinaten von \(K\).

(4 BE)

Teilaufgabe c

Berechnen Sie die Größe des spitzen Winkels, den die Seitenfläche \(ABF\) und die Grundfläche \(ABCD\) einschließen.

(3 BE)

Teilaufgabe d

Abbildung Teilaufgabe d Geometrie 2 Prüfungsteil B Mathematik Abitur Bayern 2021

Ein auf einer Stange montierter Brunnen besteht aus einer Marmorkugel, die in einer Bronzeschale liegt. Die Marmorkugel berührt die vier Innenwände der Bronzeschale an jeweils genau einer Stelle. Die Bronzeschale wird im Modell durch die Seitenflächen der Pyramide \(ABCDS\) beschrieben, die Marmorkugel durch eine Kugel mit Mittelpunkt \(M(0|0|4)\) und Radius \(r\). Die \(x_{1}x_{2}\)-Ebene des Koordinatensystems stellt im Modell den horizontal verlaufenden Erdboden dar; eine Längeneinheit entspricht einem Dezimeter in der Realität.

Ermitteln Sie den Durchmesser der Marmorkugel auf Zentimeter genau.

(zur Kontrolle: \(r = \sqrt{6}\))

(4 BE)

Teilaufgabe a

Die Punkte \(A(6|0|4)\), \(B(0|6|4)\), \(C(-6|0|4)\) und \(D\) liegen in der Ebene \(E\) und bilden die Eckpunkte der quadratischen Grundfläche einer Pyramide \(ABCDS\) mit der Spitze \(S(0|0|1)\). \(A\), \(B\) und \(S\) liegen in der Ebene \(F\).

Zeigen Sie rechnerisch, dass das Dreieck \(ABS\) gleichschenklig ist. Geben Sie die Koordinaten des Punkts \(D\) an und beschreiben Sie die besondere Lage der Ebene \(E\) im Koordinatensystem.

(4 BE)

Aufgabe

Mit einem Lasermessgerät soll ein Verkehrsschild angepeilt werden. Diese Situation wird modellhaft in einem Koordinatensystem dargestellt. Der Ausgangspunkt des Laserstrahls wird durch den Punkt \(P(104|-42|10)\) beschrieben, seine Richtung durch den Vektor \(\begin{pmatrix} -13 \\ 5 \\ 1 \end{pmatrix}\). Das Verkehrsschild wird durch eine Kreisscheibe repräsentiert, die in der \(x_{2}x_{3}\)-Ebene liegt und den Mittelpunkt \(M(0|0|20)\) sowie den Radius 3 hat.

Untersuchen Sie, ob der Laserstrahl auf das Verkehrsschild trifft.

(5 BE)

Teilaufgabe b

Berechnen Sie den Abstand von \(g\) und \(h\).

(1 BE)

Teilaufgabe d

Weisen Sie nach, dass die Gerade \(g\) die Kugel \(K\) im Punkt \(T(3|12|-2)\) berührt.

(5 BE)

Teilaufgabe c

Die Kugel \(K\) mit dem Mittelpunkt \(M(-13|20|0)\) berührt die Ebene \(E\). Bestimmen Sie die Koordinaten des zugehörigen Berührpunkts \(F\) sowie den Kugelradius \(r\).

(zur Kontrolle: \(F(-5|4|2)\), \(r = 18\))

(6 BE)