Extremwertaufgabe

  • Abbildung zu Aufgabe 4 Klausur Q11/1-004

    Nach der Einnahme eines Medikaments wird die Konzentration \(K\) des Medikaments im Blut eines Patienten gemessen.

    Die Funktion \(K \colon t \mapsto \dfrac{100t}{t^{2} + 25}\) mit \(t \geq 0\) beschreibt näherungsweise den Verlauf \(K(t)\) der Konzentration des Medikaments in Milligramm pro Liter in Abhängigkeit von der Zeit \(t\) in Stunden (vgl. Abbildung).

     

    a) Bestimmen Sie den Zeitpunkt nach der Einnahme des Medikaments, zu dem die Konzentration \(K\) des Medikaments im Blut des Patienten noch 10 % der maximalen Konzentration beträgt auf Minuten genau.

    (Teilergebnis: \(K'(t) = -\dfrac{100(t^{2} - 25)}{(t^{2} + 25)^{2}}\))

    b) Berechnen Sie die mittlere Änderungsrate der Konzentration \(K\) im Zeitintervall \([10;20]\) und interpretieren Sie das Ergebnis im Sachzusammenhang.

  • Aufgabe 1

    Geben Sie von folgenden Funktionen jeweils die maximale Definitionsmenge an und bestimmen Sie jeweils die Nullstelle(n). Bilden Sie jeweils die Ableitungsfunktion und vereinfachen Sie soweit wie möglich.

    a) \(f(x) = 2\ln{(3\sqrt{x})}\)

    b) \(g(x) = xe^{4 - 3x} + \dfrac{x^{2}}{e^{3x - 4}}\)

    c) \(h(x) = x^{3} \cdot \sin{\left( \dfrac{\pi}{3}x \right)}\)

     

    Aufgabe 2

    Gegeben ist die Funktion \(f \colon x \mapsto \ln{\left( -\dfrac{3}{x} \right)}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Bestimmen Sie das Verhalten von \(f\) an den Rändern des Definitionsbereichs \(D_{f}\).

    b) Zeigen Sie durch Rechnung, dass \(G_{f}\) in \(D_{f}\) linksgekrümmt ist.

     

    Aufgabe 3

    Die Abbildung zeigt den Graphen \(G_{f}\) der Funktion \(f \colon x \mapsto 2\sqrt{6 - x}\) mit dem Definitionsbereich \(D_{f} = [0;6]\). Der Punkt \(P(x|f(x))\), der Lotfußpunkt \(L(x|0)\) des Lotes von \(P\) auf die \(x\)-Achse und der Koordinatenursprung \(O\) legen das Dreieck \(OLP\) fest.

    Bestimmen Sie die Koordinaten des Punktes \(P\), sodass der Flächeninhalt \(A\) des Dreiecks \(OLP\) maximal ist.

    Abbildung zu Klausur Q11/2-004 Aufgabe 3

     

    Aufgabe 4

    Gegeben sind die Kugel \(K_{1}\) mit dem Mittelpunkt \(M_{1}(-3|5|8)\) und dem Radius \(r_{1} = 3\) sowie die Kugel \(K_{2}\) mit dem Mittelpunkt \(M_{2}(7|-5|3)\) und dem Radius \(r_{2} = 7\).

    Untersuchen Sie die gegenseitige Lage der Kugeln \(K_{1}\) und \(K_{2}\) und berechnen Sie ggf. den Abstand der beiden Kugeln.

     

    Aufgabe 5

    Bei der Herstellung wiederaufladbarer Batterien treten zwei Fehler auf.

    \(A\): Die Abmessung der Batterie weicht von der Typennorm ab.

    \(L\): Die Ladekapazität der Batterie liegt 20 % unter dem Sollwert.

    Laut Qualitätskontrolle weisen 15 % der Batterien den Fehler \(L\) auf und 5 % den Fehler \(A\). Die Wahrscheinlichkeit, dass mindestens einer der beiden Fehler auftritt, wird mit 17 % angegeben.

    a) Beschreiben Sie folgende Ereignisse im Sachzusammenhang:

    α) \(\overline{\overline{A} \cap \overline{L}}\)

    β) \((A \cap \overline{L}) \cup (\overline{A} \cap L)\)

    b) Erstellen Sie eine den Sachverhalt beschreibende vollständig ausgefüllte Vierfeldertaffel.

    c) Zeigen Sie dass die Ereignisse \(A\) und \(L\) stochastisch abhängig sind.

    d) Erstellen Sie ein vollständig ausgefülltes Baumdiagramm, beginnend mit dem Ereignis \(A\). Beschreiben Sie, woran sich die stochastische Abhängigkeit der Ereignisse \(A\) und \(L\) an diesem Baumdiagramm erkennen lässt.

  • Die Abbildung zeigt den Graphen \(G_{f}\) der Funktion \(f \colon x \mapsto 2\sqrt{6 - x}\) mit dem Definitionsbereich \(D_{f} = [0;6]\). Der Punkt \(P(x|f(x))\), der Lotfußpunkt \(L(x|0)\) des Lotes von \(P\) auf die \(x\)-Achse und der Koordinatenursprung \(O\) legen das Dreieck \(OLP\) fest.

    Bestimmen Sie die Koordinaten des Punktes \(P\), sodass der Flächeninhalt \(A\) des Dreiecks \(OLP\) maximal ist.

    Abbildung zu Klausur Q11/2-004 Aufgabe 3

  • Abbildung Aufgabe 1 Klausur Q12/2-001

    Die Abbildung zeigt je einen Ausschnitt des Graphen \(G_{f}\) der Funktion \(f \colon x \mapsto \sqrt{x + 2} - 2\) und des Graphen \(G_{g}\) der Funktion \(g \colon x \mapsto -\sqrt{4 - x} + 4\).

    a) Beschreiben Sie schrittweise wie der Graph \(G_{f}\) und der Graph \(G_{g}\) jeweils aus dem Graphen der Funktion \(x \mapsto \sqrt{x}\) hervorgeht und bestimmen Sie jeweils die maximale Definitionsmenge der Funktionen \(f\) und \(g\) durch Rechnung.

    Betrachtet wird die Strecke \([PQ]\) der Punkte \(P(x|f(x))\) und \(Q(x|g(x))\) mit derselben Abszisse.

    b) Zeigen Sie, dass der Funktionsterm \(d(x) = -\sqrt{4 - x} -\sqrt{x + 2} + 6\) die Länge der Strecke \([PQ]\) in Abhängigkeit der \(x\)-Koordinate des Punktes \(P\) bzw. \(Q\) beschreibt, und geben Sie die Definitionsmenge der Funktion \(d\) an.

    c) Bestimmen Sie die \(x\)-Koordinate des Punktes \(P\) bzw. \(Q\), für die die Länge der Strecke \([PQ]\) minimal ist.

    Die Gerade \(x = -1\) und die Gerade \(x = 3\) schließen mit den Graphen \(G_{f}\) und \(G_{g}\) ein Flächenstück mit dem Flächeninhalt \(A\) ein.

    d) Der Flächeninhalt \(A\) soll zunächst näherungsweise berechnet werden. Hierfür wird das Viereck \(SPQR\) betrachtet, welches die Punkte \(S(-1|f(-1))\), \(P(3|f(3))\), \(Q(3|g(3))\) und \(R(-1|g(-1))\) festlegen. Der Schnittpunkt der Strecken \([PR]\) und \([QS]\) halbiert die Strecken jeweils.

    Zeichnen Sie das Viereck \(SPQR\) in die Abbildung ein und schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\). Beschreiben Sie die wesentlichen Schritte eines geeigneten Lösungsverfahrens, um \(A\) näherungsweise zu berechnen.

    e) Berechnen Sie den exakten Wert des Flächeninhalts \(A\).

    f) Betrachtet wird nun die Integralfunktion \(\displaystyle I \colon x \mapsto \int_{0}^{x} d(t) dt\).

    Geben Sie an, welche der folgenden Terme die Maßzahl des Flächeninhalts \(A\) berechnen (Falsche Antworten zählen negativ).

      (I)  \(I(-1) + I(3)\)

     (II)  \(I(-1) - I(3)\)

    (III)  \(I(3) - I(-1)\)

    (IV)  \(\vert I(-1) \vert - \vert I(3) \vert\)

     (V)  \(\vert I(-1) \vert + I(3)\)

    (VI)  \(I(-1) + \vert I(3) \vert\)

  • Die Punkte \(A(0|2|2)\), \(B(2|3|0)\) und \(C(0|-2|4)\) legen die Ebene \(E\) fest.

    a) Ermitteln Sie eine Gleichung der Ebene \(E\) in Normalenform.

    (mögliches Ergebnis: \(E \colon 3x_{1} + 2x_{2} + 4x_{3} = 12\))

    b) Ermitteln Sie die Koordinaten der Schnittpunkte \(S_{1}\), \(S_{2}\) und \(S_{3}\) der Ebene \(E\) mit der \(x_{1}\)-, \(x_{2}\)- bzw. \(x_{3}\)-Achse und veranschaulichen Sie die Lage der Ebene \(E\) in einem kartesischen Koordinatensystem.

    c) Bestimmen Sie eine Gleichung der Schnittgeraden \(s\) der Ebene \(E\) und der \(x_{2}x_{3}\)-Ebene.

    d) Berechnen Sie die Koordinaten des Punktes \(S'\), der durch Spiegelung des Punktes \(S_{1}\) an der Geraden \(s\) hervorgeht.

  • Dem Flächenstück, das \(G_h\) mit der \(x\)-Achse vollständig einschließt, werden Rechtecke so einbeschrieben, dass jeweils eine Seite des Rechtecks auf der \(x\)-Achse liegt. Berechnen Sie den größtmöglichen Flächeninhalt \(A\) eines solchen Rechtecks.

    (Ergebnis: \(A = \frac{16}{9}\sqrt{3}\))

    (6 BE)

  • Eine Radarstation, deren Position im Modell durch den Punkt \(R\,(20|30|0)\) veranschaulicht wird, erfasst alle Objekte im Luftraum bis zu einer Entfernung von 50 km. Berechnen Sie die Länge der Flugstrecke von \(F_2\) in dem vom Radar erfassten Bereich.

    (6 BE)

  • In einem Koordinatensystem (vgl. Abbildung 1) werden alle Rechtecke betrachtet, die folgende Bedingungen erfüllen:

    • Zwei Seiten liegen auf den Koordinatenachsen.

    • Ein Eckpunkt liegt auf dem Graphen \(G_f\) der Funktion \(f \, \colon x \mapsto -\ln x\) mit \(0 < x < 1\).

    Abbildung 1 zeigt ein solches Rechteck.

    Abbildung 1 zu Teilaufgabe 4Abb. 1

    Unter den betrachteten Rechtecken gibt es eines mit größtem Flächeninhalt. Berechnen Sie die Seitenlängen dieses Rechtecks.

    (5 BE)

  • Für jedes \(x \in \; ]0;4[\) wird der Abstand der vertikal übereinander liegenden Punkte \((x|q(x))\) und \((x|f(x))\) der Graphen von \(q\) bzw. \(f\) betrachtet, wobei in diesem Bereich \(q(x) > f(x)\) gilt. Der größte dieser Abstände ist ein Maß dafür, wie gut die Parabel den Graphen \(G_{f}\) im Bereich \(0 < x < 4\) annähert. Beschreiben Sie die wesentlichen Schritte, mithilfe derer man diesen größten Abstand rechnerisch bestimmen kann.

    (3 BE)

  • Es gibt Punkte des Querschnitts der Tunnelwand, deren Abstand zu \(M\) minimal ist. Bestimmen Sie die \(x\)-Koordinaten der Punkte \(P_{x}\), für die \(d(x)\) minimal ist, und geben Sie davon ausgehend diesen minimalen Abstand an.

    (5 BE)

  • Um die Sonneneinstrahlung im Laufe des Tages möglichst effektiv zur Energiegewinnung nutzen zu können, lässt sich das Metallrohr mit dem Solarmodul um die Längsachse des Rohrs drehen. Die Größe des Neigungswinkels \(\varphi\) gegenüber der Horizontalen bleibt dabei unverändert. Betrachtet wird der Eckpunkt des Solarmoduls, der im Modell durch den Punkt \(A\) dargestellt wird. Berechnen Sie den Radius des Kreises, auf dem sich dieser Eckpunkt des Solarmoduls bei der Drehung des Metallrohrs bewegt, auf Zentimeter genau.

    (4 BE)

  • Berechnen Sie, welche Menge der Flüssigkeit verkauft werden muss, damit das Unternehmen den größten Gewinn erzielt.

    (5 BE)

  • Zeigen Sie, dass es einen Wert von \(k > 0\) gibt, für den \(A(k)\) maximal ist. Berechnen Sie diesen Wert von \(k\) sowie den Flächeninhalt des zugehörigen Dreiecks \(P_{k}Q_{k}R\).

    (6 BE)

  • Für jeden Wert \(s > 0\) legen die Punkte \((0|1)\), \((s|1)\), \((s|f(s))\) und \((0|f(s))\) ein Rechteck mit dem Flächeninhalt \(R(s)\) fest.

    Zeichnen Sie dieses Rechteck für \(s = 5\) in die Abbildung 1 ein.
    Zeigen Sie, dass \(R(s)\) für einen bestimmten Wert von \(s\) maximal ist, und geben Sie diesen Wert von \(s\) an.

    Abbildung 1 Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2020

    (zur Kontrolle: \(R(s) = 7s \cdot e^{-0{,}2s}\))

    (7 BE)

  • Es gibt einen Wert von \(c\), für den der Flächeninhalt \(A(c)\) des Rechtecks \(PQRS\) maximal ist. Berechnen Sie diesen Wert von \(c\).

    (4 BE) 

  • Für einen bestimmten Wert \(n \in \{1;2;3;\dots\}\) werden für \(p \in \;]0;1[\) die binomialverteilten Zufallsgrößen \(Z_p\) mit den Parametern \(n\) und \(p\) betrachtet. Weisen Sie nach, dass unter diesen Zufallsgrößen diejenige mit \(p = 0{,}5\) die größte Varianz hat.

    (3 BE) 

Seite 1 von 2