Geradengleichung in Parameterform

Teilaufgabe a

Gegeben sind in einem kartesischen Koordinatensystem die Ebene \(E \colon 4x_{1} - 8x_{2} + x_{3} + 50 = 0\) und die Gerade \(g \colon \overrightarrow{X} = \begin{pmatrix} 3 \\ 12 \\ -2 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 5 \\ 11 \\ -4 \end{pmatrix}, \; \lambda \in \mathbb R\,.\)

Erläutern Sie, warum die folgende Rechnung ein Nachweis dafür ist, dass \(g\) und \(E\) genau einen gemeinsamen Punkt haben:

\[\begin{pmatrix} 4 \\ -8 \\ 1 \end{pmatrix} \circ \begin{pmatrix} 5 \\ 11 \\ -4 \end{pmatrix} = -72 \neq 0\]

(1 BE)

Teilaufgabe f

Die Abbildung 2 zeigt den Grundriss des Hallenmodells in der \(x_{1}x_{2}\)-Ebene. Stellen Sie unter Verwendung der bisherigen Ergebnisse den Schattenbereich der Flutlichtanlage in der Abbildung exakt dar.

Abbildung 2 Geometrie 1 Prüfungsteil B Mathematik Abitur Bayern 2020

(4 BE)

Teilaufgabe c

Der Punkt \(T(7|10|0)\) liegt auf der Kante \([A_{3}A_{4}]\). Untersuchen Sie rechnerisch, ob es Punkte auf der Kante \([B_{3}B_{4}]\) gibt, für die gilt: Die Verbindungsstrecken des Punktes zu den Punkten \(B_{1}\) und \(T\) stehen aufeinander senkrecht. Geben Sie gegebenenfalls die Koordinaten dieser Punkte an.

(6 BE)

Teilaufgabe c

Für \(a \in \mathbb R^{+}\) ist die Gerade \(g_{a} \colon \overrightarrow{X} = \begin{pmatrix} 2{,}5 \\ 0 \\ 3{,}5 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 0 \\ -10a \\ \frac{2}{a} \end{pmatrix}\) mit \(\lambda \in \mathbb R\) gegeben.

Bestimmen Sie den Wert von \(a\), sodass die Gerade \(g_{a}\) die Würfelfläche \(CDHG\) in ihrem Mittelpunkt schneidet.

(3 BE)

Teilaufgabe e

Ein zweiter Bohrkanal wird benötigt, durch den das entnommene Wasser abgekühlt zurück in die wasserführende Gesteinsschicht geleitet wird. Der Bohrkanal soll geradlinig und senkrecht zur Erdoberfläche verlaufen. Für den Beginn des Bohrkanals an der Erdoberfläche kommen nur Bohrstellen in Betracht, die im Modell durch einen Punkt \(B(t|-t|0)\) mit \(t \in \mathbb R\) beschrieben werden können.

Zeigen Sie rechnerisch, dass der zweite Bohrkanal die wasserführende Gesteinsschicht im Modell im Punkt \(T(t|-t|-4{,}3)\) erreicht, und erläutern Sie, wie die Länge des zweiten Bohrkanals bis zur wasserführenden Gesteinsschicht von der Lage der zugehörigen Bohrstelle beeinflusst wird.

(3 BE)

Teilaufgabe d

Der Bohrkanal wird geradlinig verlängert und verlässt die wasserführende Gesteinsschicht in einer Tiefe von 3600 m unter der Erdoberfläche. Die Austrittsstelle wird im Modell als Punkt \(R\) auf der Geraden \(PQ\) beschrieben. Bestimmen Sie die Koordinaten von \(R\) und ermitteln Sie die Dicke der wasserführenden Gesteinsschicht auf Meter gerundet.

(zur Kontrolle: \(x_{1}\)- und \(x_{2}\)-Koordinate von \(R\): \(1{,}04\))

(6 BE)

Teilaufgabe f

Die untere Netzkante berührt die Plattform 2 an der Seite, die durch die Strecke \([RT]\) dargestellt wird. Betrachtet wird der untere Eckpunkt des Netzes, der oberhalb der Plattform 2 befestigt ist. Im Modell hat dieser Eckpunkt die Koordinaten \((5|10|h)\) mit einer reellen Zahl \(h > 3\). Die untere Netzkante liegt auf der Geraden \(g \colon \overrightarrow{X} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 5 \\ 10 \\ h - 2 \end{pmatrix}, \; \lambda \in \mathbb R\,\).

Berechnen Sie den Abstand des betrachteten Eckpunkts von der Plattform 2.

(5 BE)

Teilaufgabe 2a

Gegeben Sind die Punkte \(A(0|0|0)\), \(B(3|-6|6)\) und \(F(2|-4|4)\) sowie die Gerade \(g \colon \overrightarrow{X} = \begin{pmatrix} 0 \\ -4 \\ 5 \end{pmatrix} + \lambda \cdot \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}, \; \lambda \in \mathbb R\).

Die Gerade \(h\) verläuft durch die Punkte \(A\) und \(B\). Zeigen Sie, dass sich \(g\) und \(h\) im Punkt \(F\) senkrecht schneiden.

(4 BE)

Teilaufgabe 2a

Für jeden Wert von \(a\) mit \(a \in \mathbb R\) ist eine Gerade \(g_{a}\) gegeben durch \(g_{a} \colon \overrightarrow{X} = \begin{pmatrix} 2 \\ a - 4 \\ 4 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}, \; \lambda \in \mathbb R\).

Bestimmen Sie in Abhängigkeit von \(a\) die Koordinaten des Punkts, in dem \(g_{a}\) die \(x_{1}x_{2}\)-Ebene schneidet.

(2 BE)

Teilaufgabe 1b

Die Gerade \(g\) berührt die Kugel im Punkt \(B(-3|8|2)\). Ermitteln Sie eine mögliche Gleichung von \(g\).

(2 BE)