Lineares Gleichungssystem

Teilaufgabe e

Die Ebene \(F\) schneidet die \(x_{1}x_{2}\)-Ebene in der Geraden \(g\). Bestimmen Sie eine Gleichung von \(g\).

(zur Kontrolle: \(g \colon \overrightarrow{X} = \begin{pmatrix} 30 \\ 0 \\ 0 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1 \\ -3 \\ 0 \end{pmatrix}, \; \lambda \in \mathbb R\))

(3 BE)

Teilaufgabe 3b

Die Varianz von \(Y\) ist gleich \(\frac{11}{8}\).

Bestimmen Sie die Werte von \(a\) und \(b\).

(5 BE)

Teilaufgabe c

Für \(a \in \mathbb R^{+}\) ist die Gerade \(g_{a} \colon \overrightarrow{X} = \begin{pmatrix} 2{,}5 \\ 0 \\ 3{,}5 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 0 \\ -10a \\ \frac{2}{a} \end{pmatrix}\) mit \(\lambda \in \mathbb R\) gegeben.

Bestimmen Sie den Wert von \(a\), sodass die Gerade \(g_{a}\) die Würfelfläche \(CDHG\) in ihrem Mittelpunkt schneidet.

(3 BE)

Teilaufgabe 2

Die Zufallsgröße \(X\) kann ausschließlich die Werte \(1\), \(4\), \(9\) und \(16\) annehmen. Bekannt sind \(P(X = 9) = 0{,}2\) und \(P(X = 16) = 0{,}1\) sowie der Erwartungswert \(E(X) = 5\). Bestimmen Sie mithilfe eines Ansatzes für den Erwartungswert die Wahrscheinlichkeit \(P(X = 1)\) und \(P(X = 4)\).

(3 BE)

Teilaufgabe f

Die untere Netzkante berührt die Plattform 2 an der Seite, die durch die Strecke \([RT]\) dargestellt wird. Betrachtet wird der untere Eckpunkt des Netzes, der oberhalb der Plattform 2 befestigt ist. Im Modell hat dieser Eckpunkt die Koordinaten \((5|10|h)\) mit einer reellen Zahl \(h > 3\). Die untere Netzkante liegt auf der Geraden \(g \colon \overrightarrow{X} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 5 \\ 10 \\ h - 2 \end{pmatrix}, \; \lambda \in \mathbb R\,\).

Berechnen Sie den Abstand des betrachteten Eckpunkts von der Plattform 2.

(5 BE)

Teilaufgabe 2b

Für genau einen Wert von \(a\) hat die Gerade \(g_{a}\) einen Schnittpunkt mit der \(x_{3}\)-Achse. Ermitteln Sie die Koordinaten dieses Schnittpunkts.

(3 BE)

Lösung - Aufgabe 4

Überprüfen Sie die Vektoren \(\overrightarrow{a} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}\), \(\overrightarrow{b} = \begin{pmatrix} -2 \\ 3 \\ 4 \end{pmatrix}\) und \(\overrightarrow{c} = \begin{pmatrix} 3 \\ -3 \\ 1 \end{pmatrix}\) auf lineare Abhängigkeit und deuten Sie das Ergebnis geometrisch.

Lösung - Aufgabe 4

Gegeben sind die Punkte \(A(-3|-1|4)\), \(B(0|6|5)\) und \(C(3|2|1)\).

a) Prüfen Sie, ob die drei Punkte \(A\), \(B\) und \(C\) auf einer Geraden liegen.

b) Eine Gleichung der Geraden \(AB\) in Parameterform ist gegeben mit \(AB \colon \overrightarrow{X} = \overrightarrow{A} + \lambda \cdot \overrightarrow{AB}; \; \lambda \in \mathbb R\). Beschreiben Sie ausgehend von dieser Geradengleichung die Strecke [AB].