Mathematik Abitur Bayern 2017

Teilaufgabe b

Ermitteln Sie eine Gleichung der Ebene \(F\), in der das Dreieck \(DAS\) liegt, in Normalenform.

(mögliches Ergebnis: \(F \colon 12x_{1} - 5x_{3} = 0\))

(3 BE)

Teilaufgabe e

Bestimmen Sie eine Gleichung der Symmetrieachse \(g\) des Dreiecks \(CDS\).

(2 BE)

Teilaufgabe f

Ein Teil der Zeltwand, die im Modell durch das Dreieck \(CDS\) dargestellt wird, kann mithilfe zweier vertikal stehender Stangen der Länge 1,80 m zu einem horizontalen Vordach aufgespannt werden (vgl. Abbildung 2). Die dadurch entstehende 1,40 m breite Öffnung in der Zeltwand wird im Modell durch ein Rechteck dargestellt, das symmetrisch zu \(g\) liegt Dabei liegt eine Seite dieses Rechtecks auf der Strecke \([CD]\). Berechnen Sie den Flächeninhalt des Vordachs.

Abbildung 2 Teilaufgabe f Geometrie 2 Mathematik Abitur Bayern 2017 B

(5 BE)

Teilaufgabe c

Jeweils zwei benachbarte Zeltwände schließen im Inneren des Zelts einen stumpfen Winkel ein. Ermitteln Sie die Größe dieses Winkels.

(3 BE)

Teilaufgabe a

Ein geschlossenes Zelt, das auf horizontalem Untergrund steht, hat die Form einer Pyramide mit quadratischer Grundfläche. Die von der Zeltspitze ausgehenden Seitenkanten werden durch vier gleich lange Stangen gebildet. das Zelt ist 6 m hoch, die Seitenlänge des Zeltbodens beträgt 5 m.

Das Zelt wird in einem kartesischen Koordinatensystem (vgl. Abbildung) modellhaft durch eine Pyramide \(ABCDS\) mit der Spitze \(S(2{,}5|2{,}5|6)\) dargestellt. Der Punkt \(A\) liegt im Koordinatenursprung, \(C\) hat die Koordinaten \((5|5|0)\). Der Punkt \(B\) liegt auf der \(x_{1}\)-Achse, \(D\) auf der \(x_{2}\)-Achs. Das Dreieck \(CDS\) liegt in der Ebene \(E\colon 12x_{2} + 5x_{3} = 60\). Eine Längeneinheit im Koordinatensystem entspricht einem Meter in der Realität.

Abbildung 1 Teilaufgabe a Geometrie 2 Mathematik Abitur Bayern 2017 B

Geben Sie die Koordinaten der Punkte \(B\) und \(D\) an und zeichnen Sie die Pyramide in ein Koordinatensystem ein.

(3 BE)

Teilaufgabe d

Im Zelt ist eine Lichtquelle so aufgehängt, dass sie von jeder der vier Wände einen Abstand von 50 cm hat. Ermitteln Sie die Koordinaten des Punkts, der im Modell die Lichtquelle darstellt.

(4 BE)

Teilaufgabe f

Um die Sonneneinstrahlung im Laufe des Tages möglichst effektiv zur Energiegewinnung nutzen zu können, lässt sich das Metallrohr mit dem Solarmodul um die Längsachse des Rohrs drehen. Die Größe des Neigungswinkels \(\varphi\) gegenüber der Horizontalen bleibt dabei unverändert. Betrachtet wird der Eckpunkt des Solarmoduls, der im Modell durch den Punkt \(A\) dargestellt wird. Berechnen Sie den Radius des Kreises, auf dem sich dieser Eckpunkt des Solarmoduls bei der Drehung des Metallrohrs bewegt, auf Zentimeter genau.

(4 BE)