Prisma

Teilaufgabe 1a

Die Abbildung zeigt ein gerades Prisma \(ABCDEF\) mit \(A\,(0|0|0)\), \(B\,(8|0|0)\), \(C\,(0|8|0)\) und \(D\,(0|0|4)\).

Abbildung zu Teilaufgabe 1

Bestimmen Sie den Abstand der Eckpunkte \(B\) und \(F\).

(2 BE)

Teilaufgabe e

Machen Sie plausibel, dass das Volumen des Spats mithilfe der Formel \(V = G \cdot h\) berechnet werden kann, wobei \(G\) der Flächeninhalt des Rechtecks \(ABQP\) und \(h\) die zugehörige Höhe des Spats ist. 

(3 BE)

Teilaufgabe a

In einem kartesischen Koordinatensystem sind die Punkte \(A\,(10|2|0)\), \(B\,(10|8|0)\), \(C\,(10|4|3)\), \(R\,(2|2|0)\), \(S\,(2|8|0)\) und \(T\,(2|4|3)\) gegeben. Der Körper \(ABCRST\) ist ein gerades dreiseitiges Prisma mit der Grungfläche \(ABC\), der Deckfläche \(RST\) und rechteckigen Seitenflächen.

Zeichen Sie das Prisma in ein kartesisches Koordinatensystem (vgl. Abbildung) ein. Welche besondere Lage im Koordinatensystem hat die Grundfläche \(ABC\,\)? Berechnen Sie das Volumen des Prismas.
Abbildung: Koordinatensystem

(6 BE)