Signifikanzniveau

Teilaufgabe 3a

Die Inhaberin der Losbude beschäftigt einen Angestellten, der Besucher des Volksfests anspricht, um diese zum Kauf von Losen zu animieren. Sie ist mit der Erfolgsquote des Angestellten unzufrieden.

Die Inhaberin möchte dem Angestellten das Gehalt kürzen, wenn weniger als 15 % der angesprochenen Besucher Lose kaufen. Die Entscheidung über die Gehaltskürzung soll mithilfe eines Signifikanztests auf der Grundlage von 100 angesprochenen Besuchern getroffen werden. Dabei soll möglichst vermieden werden, dem Angestellten das Gehalt zu Unrecht zu kürzen. Geben Sie die entsprechende Nullhypothese an und ermitteln Sie die zugehörige Entscheidungsregel auf dem Signifikanzniveau von 10 %.

(5 BE)

Teilaufgabe 2d

Das Unternehmen richtet ein Online-Portal zur Reservierung ein und vermutet, dass dadurch der Anteil der Personen mit Reservierung, die zur jeweiligen Fahrt nicht erscheinen, zunehmen könnte. Als Grundlage für die Entscheidung darüber, ob pro Fahrt künftig mehr als 64 Reservierungen zugelassen werden, soll die Nullhypothese „Die Wahrscheinlichkeit dafür, dass eine zufällig ausgewählte Person mit Reservierung nicht zur Fahrt erscheint, beträgt höchstens 10 %." mithilfe einer Stichprobe von 200 Personen mit Reservierung auf einem Signifikanzniveau von 5 % getestet werden. Vor der Durchführung des Tests wird festgelegt, die Anzahl der für eine Fahrt möglichen Reservierungen nur dann zu erhöhen, wenn die Nullhypothese aufgrund des Testergebnisses abgelehnt werden müsste.

Ermitteln Sie die zugehörige Entscheidungsregel.

(5 BE)

Teilaufgabe 1c

Das neue Granulat ist teurer als das vorherige. Geben Sie an, welche Überlegung zur Wahl der Nullhypothese geführt haben könnte, und begründen Sie Ihre Angabe.

(3 BE)

Teilaufgabe 1b

Die Kunststoffteile werden aus Kunststoffgranulat hergestellt. Nach einem Wechsel des Granulats vermutet der Produktionsleiter, dass sich der Anteil der fehlerhaften Teile reduziert hat. Um einen Anhaltspunkt dafür zu gewinnen, ob die Vermutung gerechtfertigt ist, soll die Nullhypothese „Der Anteil der fehlerhaften Teile beträgt mindestens 4 %." auf der Grundlage einer Stichprobe von 200 Teilen auf einem Signifikanzniveau von 5 % getestet werden.

Bestimmen sie die zugehörige Entscheidungsregel.

(4 BE)

Teilaufgabe e

Der Großhändler behauptet, dass sich die Wahrscheinlichkeit für das Keimen eines Samenkorns der Qualität B durch eine veränderte Aufbereitung des Saatguts auf mehr als 70 % erhöht hat. Deshalb soll die Nullhypothese „Die Wahrscheinlichkeit für das Keimen eines Samenkorns der Qualität B ist höchstens 70 %." auf einem Signifikanzniveau von 5 % getestet werden. Dazu werden 100 der verändert aufbereiteten Samenkörner der Qualität B zufällig ausgewählt und gesät. Bestimmen Sie die zugehörige Entscheidungsregel.

(5 BE)

Teilaufgabe 2

Nachdem die zwei Millionen Flaschen verkauft sind, wird die Werbeaktion fortgesetzt. Der Getränkehersteller verspricht, dass weiterhin jede 20. Flasche eine Gewinnmarke enthält. Aufgrund von Kundenäußerungen vermutet der Filialleiter eines Getränkemarkts jedoch, dass der Anteil der Saftschorle-Flaschen mit einer Gewinnmarke im Verschluss nun geringer als 0,05 ist, und beschwert sich beim Getränkehersteller.

Der Getränkehersteller bietet ihm an, anhand von 200 zufällig ausgewählten Flaschen einen Signifikanztest für die Nullhypothese „Die Wahrscheinlichkeit dafür, in einer Flasche eine Gewinnmarke zu finden, beträgt mindestens 0,05." auf einem Signifikanzniveau von 1 % durchzuführen. Für den Fall, dass das Ergebnis des Tests im Ablehnungsbereich der Nullhypothese liegt, verspricht der Getränkehersteller, seine Abfüllanlage zu überprüfen und die Kosten für eine Sonderwerbeaktion des Getränkemarkts zu übernehmen.

Ermitteln Sie den Ablehnungsbereich der Nullhypothese und bestimmen Sie anschließend unter der Annahme, dass im Mittel nur 3 % der Saftschorle-Flaschen eine Gewinnmarke enthalten, die Wahrscheinlichkeit dafür, dass der Getränkemarkt nicht in den Genuss einer kostenlosen Sonderwerbeaktion kommt.

(7 BE)

Teilaufgabe 2a

Eine der Filialen der Handelskette befindet sich in einem Einkaufszentrum, das zu Werbezwecken die Erstellung einer Smartphone-App in Auftrag geben will. Diese App soll die Kunden beim Betreten des Einkaufszentrums über aktuelle Angebote und Rabattaktionen der beteiligten Geschäfte informieren. Da dies mit Kosten verbunden ist, will der Finanzchef der Handelskette einer Beteiligung an der App nur zustimmen, wenn mindestens 15 % der Kunden der Filiale bereit sind, diese App zu nutzen. Der Marketingchef warnt jedoch davor, auf eine Beteiligung an der App zu verzichten, da dies zu einem Imageverlust führen könnte.

Um zu einer Entscheidung zu gelangen, will die Geschäftsführung der Handelskette eine der beiden folgenden Nullhypothesen auf der Basis einer Befragung von 200 Kunden auf einem Signifikanzniveau von 10 % testen:

I   „Weniger als 15 % der Kunden sind bereit, die App zu nutzen."

II  „Mindestens 15 % der Kunden sind bereit, die App zu nutzen."

Nach Abwägung der möglichen Folgen, die der Finanzchef und der Marketingchef aufgezeigt haben, wählt die Geschäftsleitung für den Test die Nullhypothese II. Bestimmen Sie die zugehörige Entscheidungsregel.

(4 BE)

Teilaufgabe 2a

Der JIM-Studie zufolge besitzen deutlich weniger als 90 % der Jugendlichen einen Computer. Daher wird an den Stadtrat einer Kleinstadt der Wunsch herangetragen, im örtlichen Jugendzentrum einen Arbeitsraum mit Computern einzurichten. Der Stadtrat möchte die dafür erforderlichen finanziellen Mittel nur dann bewilligen, wenn weniger als 90 % der Jugendlichen der Kleinstadt einen Computer besitzen.

Die Entscheidung über die Bewilligung der finanziellen Mittel soll mithilfe einer Befragung von 100 zufällig ausgewählten 12- bis 19-jährigen Jugendlichen der Kleinstadt getroffen werden. Die Wahrscheinlichkeit dafür, dass die finanziellen Mittel irrtümlich bewilligt werden, soll höchstens 5 % betragen. Bestimmen Sie die zugehörige Entscheidungsregel, bei der zugleich die Wahrscheinlichkeit dafür, dass die finanziellen Mittel irrtümlich nicht bewilligt werden, möglichst klein ist.

(4 BE)

Teilaufgabe 3b

Ein Skeptiker nimmt an, dass der Anteil der Raucherinnen unter den 40- bis 44-jährigen Frauen größer als 30 % ist. Er testet die Nullhypothese \(H_0\,\colon\;p \leq 0{,}3\); dabei gibt \(p\) die Wahrscheinlichkeit dafür an, dass eine 40- bis 44-jährige Frau raucht. Im Rahmen des Tests stellt er jeder der zehn ausgewählten Frauen die Frage „Rauchen Sie?" und erhält dabei folgende Antworten: Ja - Nein - Ja - Nein - Ja - Ja - Nein - Nein - Nein - Ja. Untersuchen Sie, ob das Ergebnis der Befragung die Annahme des Skeptikers auf einem Signifikanzniveau von 5 % stützt.

(5 BE) 

Seite 1 von 2