Anzeige nach Tag: Spiegelung von Funktionsgraphen

Teilaufgabe 2a

Abbildung 1 zeigt ein Hinderniselement in einem Skate-Park.

Abbildung 1 Aufgabe 2 Analysis 1 Mathematik Abitur Bayern 2019 BAbb. 1

Die Auffahrt des symmetrischen Hinderniselements geht in ein horizontal verlaufendes Plateau über, an das sich die Abfahrt anschließt. Die vordere und die hintere Seitenfläche verlaufen senkrecht zum horizontalen Untergrund. Um die vordere Seitenfläche mathematisch beschreiben zu können, wird ein kartesisches Koordinatensystem so gewählt, dass die \(x\)-Achse die untere Begrenzung und die \(y\)-Achse die Symmetrieachse der betrachteten Fläche darstellt. Das Plateau erstreckt sich im Modell im Bereich \(-2 \leq x \leq 2\). Die Profillinie der Abfahrt wird für \(2 \leq x \leq 8\) durch den Graphen der in Aufgabe 1 untersuchten Funktion f beschrieben (vgl. Abbildung 2). Dabei entspricht eine Längeneinheit im Koordinatensystem einem Meter in der Realität.

Abbildung 2 Aufgabe 2 Analysis 1 Mathematik Abitur Bayern 2019 BAbb. 2

Erläutern Sie die Bedeutung des Funktionswerts \(f(2)\) im Sachzusammenhang und geben Sie den Term der Funktion \(q\) an, deren Graph \(G_{q}\) für \(-8 \leq x \leq -2\) die Profillinie der Auffahrt im Modell beschreibt. 

(2 BE)

Teilaufgabe 1c

Beschreiben Sie, wie \(G_{f}\) schrittweise aus dem Graphen der in \(\mathbb R^{+}\) definierten Funktion \(x \mapsto \ln{x}\) hervorgeht. Erklären Sie damit das Monotonieverhalten von \(G_{f}\).

(5 BE)

Teilaufgabe 2b

Die beschriebene Spiegelung von \(G_{f}\) an der Geraden \(x = 4\) kann durch eine Spiegelung von \(G_{f}\) an der \(y\)-Achse mit anschließender Verschiebung ersetzt werden. Beschreiben Sie diese Verschiebung und geben Sie \(a, b \in \mathbb R\) an, sodass \(g(x) = f(ax + b)\) für \(x \in \; ]-\infty;8[\) gilt.

(3 BE)

Aufgaben

Aufgabe 1

Abbildung Aufgabe 1 Klausur Q12/2-001

Die Abbildung zeigt je einen Ausschnitt des Graphen \(G_{f}\) der Funktion \(f \colon x \mapsto \sqrt{x + 2} - 2\) und des Graphen \(G_{g}\) der Funktion \(g \colon x \mapsto -\sqrt{4 - x} + 4\).

a) Beschreiben Sie schrittweise wie der Graph \(G_{f}\) und der Graph \(G_{g}\) jeweils aus dem Graphen der Funktion \(x \mapsto \sqrt{x}\) hervorgeht und bestimmen Sie jeweils die maximale Definitionsmenge der Funktionen \(f\) und \(g\) durch Rechnung.

Betrachtet wird die Strecke \([PQ]\) der Punkte \(P(x|f(x))\) und \(Q(x|g(x))\) mit derselben Abszisse.

b) Zeigen Sie, dass der Funktionsterm \(d(x) = -\sqrt{4 - x} -\sqrt{x + 2} + 6\) die Länge der Strecke \([PQ]\) in Abhängigkeit der \(x\)-Koordinate des Punktes \(P\) bzw. \(Q\) beschreibt, und geben Sie die Definitionsmenge der Funktion \(d\) an.

c) Bestimmen Sie die \(x\)-Koordinate des Punktes \(P\) bzw. \(Q\), für die die Länge der Strecke \([PQ]\) minimal ist.

Die Gerade \(x = -1\) und die Gerade \(x = 3\) schließen mit den Graphen \(G_{f}\) und \(G_{g}\) ein Flächenstück mit dem Flächeninhalt \(A\) ein.

d) Der Flächeninhalt \(A\) soll zunächst näherungsweise berechnet werden. Hierfür wird das Viereck \(SPQR\) betrachtet, welches die Punkte \(S(-1|f(-1))\), \(P(3|f(3))\), \(Q(3|g(3))\) und \(R(-1|g(-1))\) festlegen. Der Schnittpunkt der Strecken \([PR]\) und \([QS]\) halbiert die Strecken jeweils.

Zeichnen Sie das Viereck \(SPQR\) in die Abbildung ein und schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\). Beschreiben Sie die wesentlichen Schritte eines geeigneten Lösungsverfahrens, um \(A\) näherungsweise zu berechnen.

e) Berechnen Sie den exakten Wert des Flächeninhalts \(A\).

f) Betrachtet wird nun die Integralfunktion \(\displaystyle I \colon x \mapsto \int_{0}^{x} d(t) dt\).

Geben Sie an, welche der folgenden Terme die Maßzahl des Flächeninhalts \(A\) berechnen (Falsche Antworten zählen negativ).

  (I)  \(I(-1) + I(3)\)

 (II)  \(I(-1) - I(3)\)

(III)  \(I(3) - I(-1)\)

(IV)  \(\vert I(-1) \vert - \vert I(3) \vert\)

 (V)  \(\vert I(-1) \vert + I(3)\)

(VI)  \(I(-1) + \vert I(3) \vert\)

 

Aufgabe 2

Zwei Seitenflächen eines Laplace-Würfels sind rot, drei sind gelb und eine Seitenfläche ist blau.

Wie viele Würfe sind mindestens nötig, um mit einer Wahrscheinlichkeit von mindestens 60 % mindestens dreimal die Farbe Rot zu erhalten.

 

Aufgabe 3

In einer Urne befinden sich eine gelbe und zwei blaue Kugeln. Es werden nacheinander drei Kugeln gezogen und deren Farbe notiert. Die gezogene Kugel wird jeweils zurückgelegt und zwei weitere Kugeln derselben Farbe in die Urne gegeben. Die Zufallsgröße \(X\) beschreibt die Anzahl der gezogenen gelben Kugeln.

a) Erstellen Sie ein vollständig beschriftetes Baumdiagramm und geben Sie den Ergebnisraum an.

b) Berechnen Sie die Wahrscheinlichkeit \(P(X \geq 1)\).

c) Beschreiben Sie im Sachzusammenhang ein Ereignis, dessen Wahrscheinlichkeit sich mithilfe des Terms \(1 - P(X = 3)\) berechnen lässt.

 

Aufgabe 4

Überprüfen Sie die Vektoren \(\overrightarrow{a} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}\), \(\overrightarrow{b} = \begin{pmatrix} -2 \\ 3 \\ 4 \end{pmatrix}\) und \(\overrightarrow{c} = \begin{pmatrix} 3 \\ -3 \\ 1 \end{pmatrix}\) auf lineare Abhängigkeit und deuten Sie das Ergebnis geometrisch.

 

Aufgabe 5

Die Punkte \(A(0|2|2)\), \(B(2|3|0)\) und \(C(0|-2|4)\) legen die Ebene \(E\) fest.

a) Ermitteln Sie eine Gleichung der Ebene \(E\) in Normalenform.

(mögliches Ergebnis: \(E \colon 3x_{1} + 2x_{2} + 4x_{3} = 12\))

b) Ermitteln Sie die Koordinaten der Schnittpunkte \(S_{1}\), \(S_{2}\) und \(S_{3}\) der Ebene \(E\) mit der \(x_{1}\)-, \(x_{2}\)- bzw. \(x_{3}\)-Achse und veranschaulichen Sie die Lage der Ebene \(E\) in einem kartesischen Koordinatensystem.

c) Bestimmen Sie eine Gleichung der Schnittgeraden \(s\) der Ebene \(E\) und der \(x_{2}x_{3}\)-Ebene.

d) Berechnen Sie die Koordinaten des Punktes \(S'\), der durch Spiegelung des Punktes \(S_{1}\) an der Geraden \(s\) hervorgeht.

Lösung - Aufgabe 1

Abbildung Aufgabe 1 Klausur Q12/2-001

Die Abbildung zeigt je einen Ausschnitt des Graphen \(G_{f}\) der Funktion \(f \colon x \mapsto \sqrt{x + 2} - 2\) und des Graphen \(G_{g}\) der Funktion \(g \colon x \mapsto -\sqrt{4 - x} + 4\).

a) Beschreiben Sie schrittweise wie der Graph \(G_{f}\) und der Graph \(G_{g}\) jeweils aus dem Graphen der Funktion \(x \mapsto \sqrt{x}\) hervorgeht und bestimmen Sie jeweils die maximale Definitionsmenge der Funktionen \(f\) und \(g\) durch Rechnung.

Betrachtet wird die Strecke \([PQ]\) der Punkte \(P(x|f(x))\) und \(Q(x|g(x))\) mit derselben Abszisse.

b) Zeigen Sie, dass der Funktionsterm \(d(x) = -\sqrt{4 - x} -\sqrt{x + 2} + 6\) die Länge der Strecke \([PQ]\) in Abhängigkeit der \(x\)-Koordinate des Punktes \(P\) bzw. \(Q\) beschreibt, und geben Sie die Definitionsmenge der Funktion \(d\) an.

c) Bestimmen Sie die \(x\)-Koordinate des Punktes \(P\) bzw. \(Q\), für die die Länge der Strecke \([PQ]\) minimal ist.

Die Gerade \(x = -1\) und die Gerade \(x = 3\) schließen mit den Graphen \(G_{f}\) und \(G_{g}\) ein Flächenstück mit dem Flächeninhalt \(A\) ein.

d) Der Flächeninhalt \(A\) soll zunächst näherungsweise berechnet werden. Hierfür wird das Viereck \(SPQR\) betrachtet, welches die Punkte \(S(-1|f(-1))\), \(P(3|f(3))\), \(Q(3|g(3))\) und \(R(-1|g(-1))\) festlegen. Der Schnittpunkt der Strecken \([PR]\) und \([QS]\) halbiert die Strecken jeweils.

Zeichnen Sie das Viereck \(SPQR\) in die Abbildung ein und schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\). Beschreiben Sie die wesentlichen Schritte eines geeigneten Lösungsverfahrens, um \(A\) näherungsweise zu berechnen.

e) Berechnen Sie den exakten Wert des Flächeninhalts \(A\).

f) Betrachtet wird nun die Integralfunktion \(\displaystyle I \colon x \mapsto \int_{0}^{x} d(t) dt\).

Geben Sie an, welche der folgenden Terme die Maßzahl des Flächeninhalts \(A\) berechnen (Falsche Antworten zählen negativ).

  (I)  \(I(-1) + I(3)\)

 (II)  \(I(-1) - I(3)\)

(III)  \(I(3) - I(-1)\)

(IV)  \(\vert I(-1) \vert - \vert I(3) \vert\)

 (V)  \(\vert I(-1) \vert + I(3)\)

(VI)  \(I(-1) + \vert I(3) \vert\)

Teilaufgabe 2b

Der Graph der Funktion \(h\) ist streng monoton fallend und rechtsgekrümmt.

(2 BE)

Teilaufgabe 3a

Geben Sie jeweils den Term einer Funktion an, die die angegebene(n) Eigenschaft(en) besitzt.

Die Funktion \(g\) hat die maximale Definitionsmenge \(]-\infty;5[\). 

(2 BE)

Teilaufgabe 3c

Erläutern Sie, dass die in \(\mathbb R\) definierte Funktion \(h \colon x \mapsto 4 - e^x\) den Wertebereich \(]-\infty;4[\) besitzt.

(2 BE)

Teilaufgabe 1a

Geben Sie jeweils den Term einer in \(\mathbb R\) definierten periodischen Funktion an, die die angegebene Eigenschaft hat.

Der Graph der Funktion \(g\) geht aus dem Graphen der in \(\mathbb R\) definierten Funktion \(x \mapsto \sin x\) durch Spiegelung an der y-Achse hervor.

(1 BE)

Seite 1 von 2