Anzeige nach Tag: Uneigentliches Integral

Teilaufgabe g

In der Pharmakologie wird das in positive \(x\)-Richtung unbegrenzte Flächenstück, das sich im I. Quadranten zwischen \(G_{f}\) und der \(x\)-Achse befindet, als AUC (area under the curve") bezeichnet. Nur dann, wenn diesem Flächenstück ein endlicher Flächeninhalt zugeordnet werden kann, kann die betrachtete Funktion \(f\) die zeitliche Entwicklung der Wirkstoffkonzentration auch für große Zeitwerte \(x\) realistisch beschreiben.

Die \(x\)-Achse, \(G_{f}\) und die Gerade mit der Gleichung \(x = b\) mit \(b \in \mathbb R^{+}\) schließen im I. Quadranten ein Flächenstück mit dem Inhalt \(A(b)\) ein. Bestimmen Sie mithilfe der in Aufgabe d angegebenen Stammfunktion \(F\) einen Term für \(A(b)\) und beurteilen Sie unter Verwendung dieses Terms, ob die Funktion \(f\) auch für große Zeitwerte eine realistische Modellierung der zeitlichen Entwicklung der Wirkstoffkonzentration darstellt.

(4 BE)

Aufgaben

Aufgabe 1

Bestimmen Sie die folgenden unbestimmten Integrale:

a) \(\displaystyle \int 5x^{2} \cdot e^{x^{3}} dx\)

b) \(\displaystyle \int \frac{2}{3}x \cdot \frac{2}{x^{2} + 2} dx\)

 

Aufgabe 2

Gegeben ist die Funktion \(f \colon x \mapsto \frac{1}{2}x \cdot e^{1 - x}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

a) Untersuchen Sie die Funktion \(f\) auf Nullstellen und bestimmen Sie das Verhalten von \(f\) an den Rändern des Definitionsbereichs.

b) Berechnen Sie die Lage und die Art der Extrempunkte von \(G_{f}\).

(zur Kontrolle: \(f'(x) = \frac{1}{2}e^{1 - x}(1 - x)\))

c) Untersuchen Sie das Krümmungsverhalten von \(G_{f}\) und geben Sie die Koordinaten des Wendepunkts an. Bestimmen Sie die Gleichung der Wendetangente \(w\).

(zur Kontrolle: \(f''(x) = \frac{1}{2}e^{1 - x}(x - 2)\))

d) Skizzieren Sie \(G_{f}\) sowie die Wendetangente \(w\) unter Berücksichtigung der bisherigen Ergebnisse in ein geeignetes Koordinatensystem.

e) Weisen Sie nach, dass die Funktion \(F\colon x \mapsto -\frac{1}{2}e^{1 - x}(x + 1)\) eine Stammfunktion der Funktion \(f\) ist.

f) Der Graph \(G_{f}\) und die Wendetangente \(w\) schließen im ersten Quadranten ein Flächenstück mit dem Flächeninhalt \(A\) ein. Schraffieren Sie dieses Flächenstück in der Skizze aus Teilaufgabe d und berechnen Sie den Flächeninhalt \(A\).

g) Berechnen Sie das Integral \(\displaystyle \int_{0}^{+\infty} f(x) dx\) und geben Sie die geometrische Bedeutung des Ergebnisses an.

 

Aufgabe 3

Gegeben ist die Funktion \(f \colon x \mapsto 1 - (\ln{x})^{2}\). Die Funktion \(F \colon x \mapsto x(\ln{x} - 1)^{2}\) ist eine Stammfunktion der Funktion \(f\) (Nachweis nicht erforderlich!).

Bestimmen Sie die untere Grenze \(a \in \mathbb R^{+}\) der in \(\mathbb R^{+}\) definierten Integralfunktion \(\displaystyle I \colon x \mapsto \int_{a}^{x} f(t) dt\) so, dass diese mit \(F(x)\) übereinstimmt.

 

Aufgabe 4

Gegeben sind die Punkte \(A(-3|-1|4)\), \(B(0|6|5)\) und \(C(3|2|1)\).

a) Prüfen Sie, ob die drei Punkte \(A\), \(B\) und \(C\) auf einer Geraden liegen.

b) Eine Gleichung der Geraden \(AB\) in Parameterform ist gegeben mit \(AB \colon \overrightarrow{X} = \overrightarrow{A} + \lambda \cdot \overrightarrow{AB}; \; \lambda \in \mathbb R\). Beschreiben Sie ausgehend von dieser Geradengleichung die Strecke [AB].

 

Aufgabe 5

Gegeben sind die Geraden \(g \colon \overrightarrow{X} = \begin{pmatrix} -5 \\ -2 \\ 5 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 6 \\ 3 \\ -3 \end{pmatrix}; \; \lambda \in \mathbb R\) und \(h \colon \overrightarrow{X} = \begin{pmatrix} -6 \\ -8 \\ 3 \end{pmatrix} + \mu \cdot \begin{pmatrix} 3 \\ 7 \\ 1 \end{pmatrix}; \; \mu \in \mathbb R\).

a) Weisen Sie nach, dass sich die Geraden \(g\) und \(h\) im Punkt \(S(-3|-1|4)\) schneiden.

b) Geben Sie eine Gleichung der von den Geraden \(g\) und \(h\) aufgespannten Ebene \(E\) in Parameterform an und bestimmen Sie ein Gleichung der Ebene \(E\) in Normalenform.

Lösung - Aufgabe 2

Gegeben ist die Funktion \(f \colon x \mapsto \frac{1}{2}x \cdot e^{1 - x}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

a) Untersuchen Sie die Funktion \(f\) auf Nullstellen und bestimmen Sie das Verhalten von \(f\) an den Rändern des Definitionsbereichs.

b) Berechnen Sie die Lage und die Art der Extrempunkte von \(G_{f}\).

(zur Kontrolle: \(f'(x) = \frac{1}{2}e^{1 - x}(1 - x)\))

c) Untersuchen Sie das Krümmungsverhalten von \(G_{f}\) und geben Sie die Koordinaten des Wendepunkts an. Bestimmen Sie die Gleichung der Wendetangente \(w\).

(zur Kontrolle: \(f''(x) = \frac{1}{2}e^{1 - x}(x - 2)\))

d) Skizzieren Sie \(G_{f}\) sowie die Wendetangente \(w\) unter Berücksichtigung der bisherigen Ergebnisse in ein geeignetes Koordinatensystem.

e) Weisen Sie nach, dass die Funktion \(F\colon x \mapsto -\frac{1}{2}e^{1 - x}(x + 1)\) eine Stammfunktion der Funktion \(f\) ist.

f) Der Graph \(G_{f}\) und die Wendetangente \(w\) schließen im ersten Quadranten ein Flächenstück mit dem Flächeninhalt \(A\) ein. Schraffieren Sie dieses Flächenstück in der Skizze aus Teilaufgabe d und berechnen Sie den Flächeninhalt \(A\).

g) Berechnen Sie das Integral \(\displaystyle \int_{0}^{+\infty} f(x) dx\) und geben Sie die geometrische Bedeutung des Ergebnisses an.

Aufgaben

Aufgabe 1

Berechnen Sie folgende Integrale bzw. die Integrationsgrenze \(a\) mit \(a \in \mathbb N\). Geben Sie exakte Werte an.

a) \(\displaystyle \int_{0}^{1} \frac{-6x^{2} + 6}{x^{3} - 3x + 3} dx\)

b) \(\displaystyle \int_{-a}^{3a} (3t - 2) dt = 4\)

c) \(\displaystyle \int_{1}^{\infty} \frac{3}{x^{2}} dx\)

d) \(\displaystyle \int_{4}^{8} \left( e^{-2x} -\sin\left(\frac{\pi}{4}x\right) +\frac{2}{x-2} \right) dx\)

 

Aufgabe 2

Geben sie jeweils eine Integrandenfunktion \(f(x)\) und \(g(x)\) an, sodass die folgenden Gleichungen erfüllt sind.

a) \(\displaystyle \int_{-a}^{+a} f(x) dx = 0; \; a \neq 0\)

b) \(\displaystyle \int_{-1}^{3} g(x) dx = 8\)

 

Aufgabe 3

Gegeben sind die jeweils in \(\mathbb R\) definierten Funktionenscharen \(f_{a} \colon x \mapsto x(a^{2} - x^{2})\) und \(g_{a} \colon x \mapsto x(x - a)^{2}\) mit \(a \in \mathbb R^{+}\).

 

a) Bestimmen Sie in Abhängigkeit des Parameters \(a\) den Flächeninhalt \(A(a)\) der Fläche, welche die Graphen der Funktionenscharen \(f\) und \(g\) begrenzen.

b) Für welchen Wert des Parameters \(a\) ergibt sich der Flächeninhalt 13,5 FE (Flächeneinheiten)?

 

Aufgabe 4

Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto \dfrac{1}{20}x^{5} + \dfrac{1}{12}x^{4} - \dfrac{1}{3}x^{3}\).

 

Bestimmen Sie die Wendepunkte des Graphen \(G_{f}\) der Funktion \(f\) und geben Sie das Kümmungsverhalten von \(G_{f}\) an.

 

Aufgabe 5

Abbildung zu Klausur Q12/1 001 Aufgabe 5

Die Abbildung zeigt den Graphen \(G_{f}\) einer in \(R\) definierten Funktion \(f\).

 

a) Skizzieren Sie den Graphen \(G_{F}\) der Integralfunktion \(F \colon x \mapsto \displaystyle \int_{0}^{x} f(t) dt\) in die Abbildung. Gehen Sie dabei insbesondere auf die Nullstellen und die Extremstelle von \(G_{f}\) sowie auf das Verhalten von \(G_{f}\) für \(x \to \pm \infty\) ein. Erläutern Sie Ihre Vorgehensweise.

b) „Jede Stammfunktion der abgebildeten Funktion \(f\) ist eine Integralfunktion." Nehmen Sie zu dieser Aussage begründend Stellung, indem Sie sich auf \(G_{F}\) beziehen.

Lösung - Aufgabe 1

Berechnen Sie folgende Integrale bzw. die Integrationsgrenze \(a\) mit \(a \in \mathbb N\). Geben Sie exakte Werte an.

a) \(\displaystyle \int_{0}^{1} \frac{-6x^{2} + 6}{x^{3} - 3x + 3} dx\)

b) \(\displaystyle \int_{-a}^{3a} (3t - 2) dt = 4\)

c) \(\displaystyle \int_{1}^{\infty} \frac{3}{x^{2}} dx\)

d) \(\displaystyle \int_{4}^{8} \left( e^{-2x} -\sin\left(\frac{\pi}{4}x\right) +\frac{2}{x-2} \right) dx\)