Urnenmodell

Teilaufgabe 2a

In einem Parkhaus befinden sich insgesamt 100 Parkplätze.

Im Parkhaus sind 20 Parkplätze frei; vier Autofahrer suchen jeweils einen Parkplatz. Formulieren Sie in diesem Sachzusammenhang zu den folgenden Termen jeweils eine Aufgabenstellung, deren Lösung sich durch den Term berechnen lässt.

\[\sf{α)} \; 20 \cdot 19 \cdot 18 \cdot 17 \qquad \qquad \sf{β)} \; \binom{20}{4}\]

(3 BE)

Teilaufgabe 1b

Das Glücksrad wird zehnmal gedreht. Geben Sie einen Term an, mit dem die Wahrscheinlichkeit dafür berechnet werden kann, dass der blaue Sektor genau zweimal getroffen wird.

(1 BE)

Teilaufgabe 4b

Beschreiben Sie ein Urnenexperiment, mit dem sich das Verhalten des Mechanismus bei 15-maligem Schließen des Vorhangs simulieren lässt.

(2 BE)

Teilaufgabe 2a

Aus dem Bewerberfeld werden zwanzig weibliche und zehn männliche Personen zu einem Casting eingeladen, das in zwei Gruppen durchgeführt wird. Fünfzehn der Eingeladenen werden für die erste Gruppe zufällig ausgewählt. Die Wahrscheinlichkeit dafür, dass für die erste Gruppe zehn weibliche und fünf männliche Personen ausgewählt werden, wird mit \(p\) bezeichnet.

Begründen Sie im Sachzusammenhang, dass \(p\) nicht durch den Term

\[\binom{15}{5} \cdot \left( \frac{1}{3} \right)^5 \cdot \left( \frac{2}{3} \right)^{10}\]

beschrieben wird.

(2 BE)

Teilaufgabe 2b

Bestimmen Sie die Wahrscheinlichkeit \(p\) mithilfe eines geeigneten Terms.

(4 BE)

Teilaufgabe 2b

Zehn Besucher des Gemeindefests drehen nacheinander jeweils einmal das Glücksrad. Geben Sie zu jedem der folgenden Ereignisse einen Term an, mit dem sich die Wahrscheinlichkeit des Ereignisses berechnen lässt.

\(A\): "Nur die ersten fünf Preise entfallen auf die Kategorie 4."

\(B\): "Genau die Hälfte der Preise entfällt auf die Kategorie 4."

\(C\): "Die Preise verteilen sich jeweils zur Hälfte auf die Kategorien 1 und 4."

(5 BE)