Teilaufgabe b

Berechnen Sie den Abstand von \(g\) und \(h\).

(1 BE)

Lösung zu Teilaufgabe b

 

Gerade g mit B ∈ g, Gerade h || g mit A ∈ h, Verbindungsvektor der Punkte A und B

Planskizze (optional): Der Abstand zwischen der Gerade \(\textcolor{#cc071e}{g}\) und der parallelen Gerade \(\textcolor{#0087c1}{h}\) ist gleich dem Betrag des Verbindungsvektors \(\textcolor{#e9b509}{\overrightarrow{AB}}\).

 

\(\textcolor{#0087c1}{A2|0|0(}\), \(\textcolor{#cc071e}{B(-2|3|2)}\) (vgl. Teilaufgabe a)

\[\begin{align*} d(\textcolor{#cc071e}{g};\textcolor{#0087c1}{h}) &= \vert \textcolor{#e9b509}{\overrightarrow{AB}} \vert = \vert \textcolor{#cc071e}{\overrightarrow{B}} - \textcolor{#0087c1}{\overrightarrow{A}} \vert \\[0.8em] &= \left| \textcolor{#cc071e}{\begin{pmatrix} -2 \\ 3 \\ 2 \end{pmatrix}} - \textcolor{#0087c1}{\begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}} \right| = \left| \begin{pmatrix} -4 \\ 3 \\ 2 \end{pmatrix} \right| \\[0.8em] &= \sqrt{(-4)^{2} + 3^{2} + 2^{2}} = \sqrt{29} \end{align*}\]

Weitere Lösungen dieser Aufgabengruppe: « Teilaufgabe a