maximale Definitionsmenge / maximaler Definitionsbereich

  • Gegeben ist die Funktion \(f \colon x \mapsto \sqrt{8 - 2x}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Geben Sie die maximale Definitionsbemenge \(D_{f}\) sowie die Wertemenge \(W_{f}\) der Funktion \(f\) an.

    b) Begründen Sie, dass die Funktion \(f\) umkehrbar ist. Bestimmen Sie den Funktionsterm \(f^{-1}(x)\). Geben Sie die Definitions- und die Wertemenge der Umkehrfunktion \(f^{-1}\) an.

    c) Der Graph \(G_{f}\) der Funktion \(f\) und der Graph \(G_{f^{-1}}\) der Umkehrfunktion \(f^{-1}\) schließen im ersten Quadranten mit den Koordinatenachsen ein herzförmiges Flächenstück mit dem Flächeninhalt \(A\) ein.

    Zeichnen Sie \(G_{f}\) sowie \(G_{f^{-1}}\) mithilfe der Funktionswerte \(f(0)\), \(f(2)\), \(f(3{,}5)\) und \(f(4)\) im ersten Quadranten eines gemeinsamen Koordinatensystems. Achten Sie dabei insbesondere auf den Verlauf von \(G_{f}\) an der Stelle \(x = 4\). Schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\). Berechnen Sie den Flächeninhalt \(A\).

  • Abbildung Aufgabe 1 Klausur Q12/2-001

    Die Abbildung zeigt je einen Ausschnitt des Graphen \(G_{f}\) der Funktion \(f \colon x \mapsto \sqrt{x + 2} - 2\) und des Graphen \(G_{g}\) der Funktion \(g \colon x \mapsto -\sqrt{4 - x} + 4\).

    a) Beschreiben Sie schrittweise wie der Graph \(G_{f}\) und der Graph \(G_{g}\) jeweils aus dem Graphen der Funktion \(x \mapsto \sqrt{x}\) hervorgeht und bestimmen Sie jeweils die maximale Definitionsmenge der Funktionen \(f\) und \(g\) durch Rechnung.

    Betrachtet wird die Strecke \([PQ]\) der Punkte \(P(x|f(x))\) und \(Q(x|g(x))\) mit derselben Abszisse.

    b) Zeigen Sie, dass der Funktionsterm \(d(x) = -\sqrt{4 - x} -\sqrt{x + 2} + 6\) die Länge der Strecke \([PQ]\) in Abhängigkeit der \(x\)-Koordinate des Punktes \(P\) bzw. \(Q\) beschreibt, und geben Sie die Definitionsmenge der Funktion \(d\) an.

    c) Bestimmen Sie die \(x\)-Koordinate des Punktes \(P\) bzw. \(Q\), für die die Länge der Strecke \([PQ]\) minimal ist.

    Die Gerade \(x = -1\) und die Gerade \(x = 3\) schließen mit den Graphen \(G_{f}\) und \(G_{g}\) ein Flächenstück mit dem Flächeninhalt \(A\) ein.

    d) Der Flächeninhalt \(A\) soll zunächst näherungsweise berechnet werden. Hierfür wird das Viereck \(SPQR\) betrachtet, welches die Punkte \(S(-1|f(-1))\), \(P(3|f(3))\), \(Q(3|g(3))\) und \(R(-1|g(-1))\) festlegen. Der Schnittpunkt der Strecken \([PR]\) und \([QS]\) halbiert die Strecken jeweils.

    Zeichnen Sie das Viereck \(SPQR\) in die Abbildung ein und schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\). Beschreiben Sie die wesentlichen Schritte eines geeigneten Lösungsverfahrens, um \(A\) näherungsweise zu berechnen.

    e) Berechnen Sie den exakten Wert des Flächeninhalts \(A\).

    f) Betrachtet wird nun die Integralfunktion \(\displaystyle I \colon x \mapsto \int_{0}^{x} d(t) dt\).

    Geben Sie an, welche der folgenden Terme die Maßzahl des Flächeninhalts \(A\) berechnen (Falsche Antworten zählen negativ).

      (I)  \(I(-1) + I(3)\)

     (II)  \(I(-1) - I(3)\)

    (III)  \(I(3) - I(-1)\)

    (IV)  \(\vert I(-1) \vert - \vert I(3) \vert\)

     (V)  \(\vert I(-1) \vert + I(3)\)

    (VI)  \(I(-1) + \vert I(3) \vert\)

  • Gegeben sind die folgenden Funktionen mit jeweils maximaler Definitionsmenge:

    \[p\,\colon x \mapsto \dfrac{1}{x - 1}\]

    \[q\,\colon x \mapsto \sqrt{x - 1}\]

    \[r\,\colon x \mapsto \ln (x - 1)\]

    Geben Sie jeweils die Definitionsmenge an und untersuchen Sie die Funktionen auf Nullstellen.

    (5 BE)

  • Gegeben ist die Funktion \(f\,\colon x \mapsto 2 - \sqrt{12-2x}\) mit maximaler Definitionsmenge \(D_f = \; ]-\infty;6]\). Der Graph von \(f\) wird mit \(G_f\) bezeichnet.

    Berechnen Sie die Koordinaten der Schnittpunkte von \(G_f\) mit den Koordinatenachsen. Bestimmen Sie das Verhalten von \(f\) für \(x \to -\infty\) und geben Sie \(f(6)\) an.

    (5 BE)

  • Gegeben ist die Funktion \(g \colon x \mapsto \sqrt{x + 1} - 2\) mit maximaler Definitionsmenge \(D\).

    Geben Sie \(D\) an.

    (1 BE)

  • Gegeben ist die Funktion \(g \colon x \mapsto (x^{2} - 9x) \cdot \sqrt{2 - x}\) mit maximaler Definitionsmenge \(D_{g}\). Geben Sie \(D_{g}\) und alle Nullstellen von \(g\) an.

    (3 BE)

  • Die in \(\mathbb R\) definierte Funktion \(f\) besitzt die Nullstelle \(x = 2\), außerdem gilt \(f'(x) > 0\) für alle \(x \in \mathbb R\). Abbildung 2 zeigt den Graphen \(G_f\) von \(f\).

    Abbildung 2 Analysis 2 Prüfungsteil A Mathematik Abitur Bayern 2022

    Betrachtet wird die Funktion \(g \colon x \mapsto \ln{\left( f(x) \right)}\) mit maximaler Definitionsmenge \(D_g\). Geben Sie \(D_g\) an und ermitteln Sie mithilfe von Abbildung 2 diejenige Stelle \(x\), für die \(g'(x) = f'(x)\) gilt.

    (3 BE)

  • Gegeben ist die Funktion \(g \colon x \mapsto \ln{(2 - x^{2})}\) mit maximaler Definitionsmenge \(D_{g}\).

    Skizzieren Sie die Parabel mit der Gleichung \(y = 2 - x^{2}\) in einem Koordinatensystem und geben Sie \(D_{g}\) an.

    (3 BE)

  • Gegeben ist die Funktion \(h \colon x \mapsto x \cdot \ln{(x^{2})}\) mit maximalem Definitionsbereich \(D_{h}\).

    Geben Sie \(D_{h}\) an und zeigen Sie, dass für den Term der Ableitungsfunktion \(h'\) gilt: \(h'(x) = \ln{(x^{2})} + 2\).

    (2 BE)

  • Geben ist die Funktion \(f \colon x \mapsto 2 - \ln{(x - 1)}\) mit maximalem Definitionsbereich \(D_{f}\). Der Graph von \(f\) wird mit \(G_{f}\) bezeichnet.

    Zeigen Sie, dass \(D_{f} = \; ]1;+\infty[\) ist, und geben Sie das Verhalten von \(f\) an den Grenzen des Definitionsbereichs an.

    (3 BE)

  • Gegeben ist die Funktion \(\displaystyle b\,\colon x \mapsto \frac{\ln x}{x - 2}\) mit maximalem Definitionsbereich \(D\).

    Geben Sie \(D\) an und bestimmen Sie die Gleichung der Tangente an den Graphen von \(b\) im Punkt \(\big(1|b(1)\big)\).

    (6 BE)

  • Bestimmen Sie den Term der Ableitungsfunktion \(f'\) von \(f\) und geben Sie die maximale Definitionsmenge von \(f'\) an.

    Bestimmen Sie  \(\lim \limits_{x \, \to \, 6} f'(x)\) und beschreiben Sie, welche Eigenschaft von \(G_f\) aus diesem Ergebnis folgt.

    (zur Kontrolle: \(\displaystyle f'(x) = \frac{1}{\sqrt{12 - 2x}}\))

    (5 BE)

  • Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{e^x}{e^x - 2}\) mit maximalem Definitionsbereich \(D\).

    Bestimmen Sie \(D\) und geben Sie die Koordinaten des Schnittpunkts des Graphen von \(f\) mit der \(y\)-Achse an.

    (3 BE) 

  • Geben Sie jeweils den Term einer Funktion an, die über ihrer maximalen Definitionsmenge die angegebenen Eigenschaften besitzt.

    Der Graph der Funktion \(f\) ist achsensymmetrisch zur \(y\)-Achse und die Gerade mit der Gleichung \(x = 2\) ist eine senkrechte Asymptote.

    (2 BE)

  • Gegeben ist die Funktion \(g \colon x \mapsto 2 \cdot \sqrt{4 + x} - 1\) mit maximaler Definitionsmenge \(D_{g}\). Der Graph von \(g\) wird mit \(G_{g}\) bezeichnet.

    Geben Sie \(D_{g}\) und die Koordinaten des Schnittpunkts von \(G_{g}\) mit der \(y\)-Achse an.

    (2 BE)

  • Ermitteln Sie den Wert des Parameters \(b\), sodass die Funktion \(g \colon x \mapsto \sqrt{x^2 - b}\) den maximalen Definitionsbereich \(\mathbb R \,\backslash\; ]-2;2[\) besitzt.

    (2 BE)

  • Gegeben ist die Funktion \(g \colon x \mapsto \ln(2x + 3)\) mit maximaler Definitionsmenge \(D\) und Wertemenge \(W\). Der Graph von \(g\) wird mit \(G_{g}\) bezeichnet.

    Geben Sie \(D\) und \(W\) an.

    (2 BE)

  • Geben Sie jeweils den Term einer Funktion an, die die angegebene(n) Eigenschaft(en) besitzt.

    Die Funktion \(g\) hat die maximale Definitionsmenge \(]-\infty;5[\). 

    (2 BE)

Seite 2 von 4