Quadratische Funktion

  • Abbildung 1 zeigt den Graphen der in \(\mathbb R\) definierten Funktion \(p \colon x \mapsto 0{,}5 \cdot (x + 2)^2 - 0{,}5\), die die Nullstellen \(x = -3\) und \(x = -1\) hat.

    Für \(x \in D_{f}\) gilt \(\displaystyle f(x) = \frac{1}{p(x)}\).

    Abbildung 1 zu Teilaufgabe 1c Analysis 1 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 1

    Gemäß der Quotientenregel gilt für die Ableitung \(f'\) und \(p'\) die Beziehung \(\displaystyle f'(x) = -\frac{p'(x)}{\big( p(x) \big)^2}\) für \(x \in D_{f}\).

    Zeigen Sie unter Verwendung dieser Beziehung und ohne Berechnung von \(f'(x)\) und \(p'(x)\), dass \(x = -2\) einzige Nullstelle von \(f'\) ist und dass \(G_{f}\) in \(]-3;-2[\) streng monoton steigend sowie in \(]-2;1[\) streng monoton fallend ist. Geben Sie Lage und Art des Extrempunkts von \(G_{f}\) an.

    (5 BE)

  • Der Verlauf des oberen Blattrands wird in der Nähe der Blattspitze durch das bisher verwendete Modell nicht genau genug dargestellt. Daher soll der obere Blattrand im Modell für \(-2 \leq x \leq 0\) nicht mehr durch \(G_h\), sondern durch den Graphen \(G_k\) einer in \(\mathbb R\) definierten ganzrationalen Funktion \(k\) dritten Grades beschrieben werden. Für die Funktion \(k\) werden die folgenden Bedingungen gewählt (\(k'\) und \(h'\) sind die Ableitungsfunktionen von \(k\) bzw. \(h\)):

    \[\begin{align*} \sf{I} & \quad k(0) = h(0) \\[0.8em] \sf{II} & \quad k'(0) = h'(0) \\[0.8em] \sf{III} & \quad k(-2) = h(-2) \\[0.8em] \sf{IV} & \quad k'(-2) = 1{,}5 \end{align*}\]

    Begründen Sie im Sachzusammenhang, dass die Wahl der Bedingungen I, II und III sinnvoll ist. Machen Sie plausibel, dass die Bedingung IV dazu führt, dass die Form des Blatts in der Nähe der Blattspitze im Vergleich zum ursprünglichen Modell genauer dargestellt wird.

    (3 BE)

  • Gegeben ist die in \(\mathbb R\) definierte  Funktion \(f\)  mit \(f(x) = e^x \cdot \left( 2x + x^2 \right)\).

    Bestimmen Sie die Nullstellen der Funktion \(f\).

    (2 BE)

  • Gegeben ist die in \(\mathbb R\) definierte  Funktion \(f\)  mit \(f(x) = e^x \cdot \left( 2x + x^2 \right)\).

    Bestimmen Sie die Nullstellen der Funktion \(f\).

    (2 BE)

  • Berechnen Sie den Anteil (in Prozent), den das Rechteck mit dem Flächeninhalt \(A\) am Inhalt des Flächenstücks einnimmt, das \(G_h\) mit der \(x\)-Achse vollständig einschließt.

    (4 BE)

  • Dem Flächenstück, das \(G_h\) mit der \(x\)-Achse vollständig einschließt, werden Rechtecke so einbeschrieben, dass jeweils eine Seite des Rechtecks auf der \(x\)-Achse liegt. Berechnen Sie den größtmöglichen Flächeninhalt \(A\) eines solchen Rechtecks.

    (Ergebnis: \(A = \frac{16}{9}\sqrt{3}\))

    (6 BE)

  • Gegeben ist die Funktion \(h\,\colon x \mapsto -\frac{1}{2}x^2 + 2\) mit Definitionsbereich \(\mathbb R\). Der Graph von \(h\) wird mit \(G_h\) bezeichnet.

    Geben Sie die Nullstellen von \(h\) an und zeichnen Sie \(G_h\) in ein Koordinatensystem ein.

    (3 BE)

  • An den Graphen der in \(\mathbb R\) definierten Funktion \(s\,\colon x \mapsto x^2\) gibt es genau eine Tangente, deren Neigungswinkel gegen die \(x\)-Achse eine Größe von 135° hat. Geben Sie die Steigung dieser Tangente an und bestimmen Sie anschließend die Gleichung der Tangente.

    (5 BE)

  • Ein den oberen Rand des Kunstwerks genauer darstellendes Modell liefert der Graph der in \(\mathbb R\) definierten ganzrationalen Funktion \(q\) vierten Grades mit \(q(x) = -0{,}11x^4 - 0{,}81x^2 + 5\,\). Der Graph von \(q\) wird mit \(G_q\) bezeichnet.

    Weisen Sie rechnerisch nach, dass \(G_q\) symmetrisch bezüglich der \(y\)-Achse ist, durch die Punkte \(A\) und \(B\) verläuft und genau einen Extrempunkt besitzt.

    (7 BE)

  • Abbildung 2 zeigt die Graphen von \(p\) und \(q\).

    Welcher der beiden dargestellten Graphen ist \(G_g\,\)? Begründen Sie Ihre Antwort.

    Abbildung 2: Graph von p, Graph von qAbb. 2

    (2 BE)

  • Im Intervall \(]0;2[\) gibt es eine Stelle \(x_0\), an der der Wert der Differenz \(d(x) = q(x) - p(x)\) maximal wird. Berechnen Sie \(x_0\) sowie den Wert der zugehörigen Differenz.

    (5 BE)

  • An einer Wand im Innenhof der von Antoni Gaudi gestalteten Casa Battló in Barcelona findet man ein Keramikkunstwerk (vgl. Abbildung 1).

    Der annähernd parabelförmige obere Rand des Kunstwerks soll durch den Graphen einer ganzrationalen Funktion modellhaft dargestellt werden. Auf dem Graphen sollen bei Verwendung des eingezeichneten Koordiantensystems die Punkte \(A\,(-2|0)\), \(B\,(2|0)\) und \(C\,(0|5)\) liegen (1 LE entspricht 1m, d.h. das Kunstwerk ist 5m hoch).

    Abbildung 1Abb. 1

    Ermitteln Sie den Term einer in \(\mathbb R\) definierten quadratischen Funktion \(p\), deren Graph durch die Punkte \(A\), \(B\) und \(C\) verläuft.

    (zur Kontrolle: \(p(x) = -1{,}25x^2 + 5\))

    (3 BE)

  • Berechnen Sie mithilfe der Funktion \(q\) einen Näherungswert für den Flächeninhalt \(A\) des vom Kunstwerk eingenommenen Teils der Wand.

    (4 BE)

  • Geben Sie jeweils den Term einer in \(\mathbb R\) definierten Funktion an, die die angegebene Eigenschaft besitzt.

    Der Graph der Funktion \(f\) hat den Hochpunkt \((0|5)\,\).

    (2 BE)

  • Skizzieren Sie den Graphen der in \(\mathbb R\) definierten Funktion \(f : x \mapsto 4 - x^2\). Berechnen Sie den Inhalt des Flächenstücks, das der Graph von \(f\) mit der \(x\)-Achse einschließt.

    (5 BE)

Seite 2 von 2