Analysis 1

  • Gegeben ist die Funktion \(f\) mit \(f(x) = x^3 - 6x^2 + 11x - 6\) und \(x \in \mathbb R\).

    Weisen Sie nach, dass der Wendepunkt des Graphen von \(f\) auf der Geraden mit der Gleichung \(y = x - 2\) liegt.

    (3 BE)

  • Der Graph von \(f\) wird verschoben. Der Punkt \((2|0)\) des Graphen der Funktion \(f\) besitzt nach der Verschiebung die Koordinaten \((3|2)\). Der verschobene Graph gehört zu einer Funktion \(h\). Geben Sie eine Gleichung von \(h\) an.

    (2 BE)

  • Gegeben ist die Funktion \(f\) mit \(\displaystyle f(x) = \frac{1}{x + 1} - \frac{1}{x + 3}\) und Definitionsmenge \(D_{f} = \mathbb R \, \backslash \, \{-3;-1\}\). Dr Graph von \(f\) wird mit \(G_{f}\) bezeichnet.

    Zeigen Sie, dass \(f(x)\) zu jedem der drei folgenden Terme äquivalent ist:

    \(\displaystyle \frac{2}{(x + 1)(x + 3)}\); \(\displaystyle \frac{2}{x^2 + 4x + 3}\); \(\displaystyle \frac{1}{0{,}5 \cdot (x + 2)^2 - 0{,}5}\) 

    (4 BE)

  • Begründen Sie, dass die \(x\)-Achse horizontale Asymptote von \(G_{f}\) ist, und geben Sie die Gleichungen der vertikalen Asymptoten von \(G_{f}\) an. Bestimmen Sie die Koordinaten des Schnittpunkts von \(G_{f}\) mit der \(y\)-Achse.

    (3 BE)

  • Abbildung 1 zeigt den Graphen der in \(\mathbb R\) definierten Funktion \(p \colon x \mapsto 0{,}5 \cdot (x + 2)^2 - 0{,}5\), die die Nullstellen \(x = -3\) und \(x = -1\) hat.

    Für \(x \in D_{f}\) gilt \(\displaystyle f(x) = \frac{1}{p(x)}\).

    Abbildung 1 zu Teilaufgabe 1c Analysis 1 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 1

    Gemäß der Quotientenregel gilt für die Ableitung \(f'\) und \(p'\) die Beziehung \(\displaystyle f'(x) = -\frac{p'(x)}{\big( p(x) \big)^2}\) für \(x \in D_{f}\).

    Zeigen Sie unter Verwendung dieser Beziehung und ohne Berechnung von \(f'(x)\) und \(p'(x)\), dass \(x = -2\) einzige Nullstelle von \(f'\) ist und dass \(G_{f}\) in \(]-3;-2[\) streng monoton steigend sowie in \(]-2;1[\) streng monoton fallend ist. Geben Sie Lage und Art des Extrempunkts von \(G_{f}\) an.

    (5 BE)

  • Berechnen Sie \(f(-5)\) und \(f(-1{,}5)\) und skizzieren Sie \(G_{f}\) unter Berücksichtigung der bisherigen Ergebnisse in Abbildung 1.

    (4 BE)

  • Gegeben ist die Funktion \(\displaystyle h \colon x \mapsto \frac{3}{e^{x + 1} - 1}\) mit Definitionsbereich \(D_{h} = ]-1;+\infty[\). Abbildung 2 zeigt den Graphen \(G_{h}\) von \(h\).

    abbildung 2 zu Teilaufgabe 2 Analysis 1 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 2

    Begründen Sie anhand des Funktionsterms, das \(\lim \limits_{x \, \to \, +\infty} h(x) = 0\) gilt.

    Zeigen Sie rechnerisch für \(x \in D_{h}\), dass für die Ableitung \(h'\) von \(h\) gilt: \(h'(x) < 0\).

    (4 BE)

  • Gegeben ist ferner die in \(D_{h}\) definierte Integralfunktion \(\displaystyle H_{0} \colon x \mapsto \int_{0}^{x} h(t) \,dt\).

    Begründen Sie ohne weitere Rechnung, dass folgende Aussagen wahr sind:

    α) Der Graph von \(H_{0}\) ist streng monoton steigend.

    β) Der Graph von \(H_{0}\) ist rechtsgekrümmt.

    (4 BE)

  • Geben Sie die Nullstelle von \(H_{0}\) an und bestimmen Sie näherungsweise mithilfe von Abbildung 2 die Funktionswerte \(H_{0}(-0{,}5)\) sowie \(H_{0}(3)\). Skizzieren Sie in Abbildung 2 den Graphen von \(H_{0}\) im Bereich \(-0{,}5 \leq x \leq 3\).

    (6 BE)

  • In einem Labor wird ein Verfahren zur Reinigung von mit Schadstoffen kontaminiertem Wasser getestet. Die Funktion \(h\) aus Aufgabe 2 beschreibt für \(x \geq 0\) modellhaft die zeitliche Entwicklung des momentanen Schadstoffabbaus in einer bestimmten Wassermenge. Dabei bezeichnet \(h(x)\) die momentane Schadstoffabbaurate in Gramm pro Minute und \(x\) die seit Beginn des Reinigungsvorgangs vergangene Zeit in Minuten.

    Bestimmen Sie auf der Grundlage des Modells den Zeitpunkt \(x\), zu dem die momentane Schadstoffabbaurate auf 0,01 Gramm pro Minute zurückgegangen ist.

    (3 BE)

  • Die in \(\mathbb R \, \backslash \, \{-3;-1\}\) definierte Funktion \(\displaystyle k \colon x \mapsto 3 \cdot \left( \frac{1}{x + 1} - \frac{1}{x + 3} \right) - 0{,}2\) stellt im Bereich \(-0{,}5 \leq x \leq 2\) eine gute Näherung für die Funktion \(h\) dar.

    Beschreiben Sie, wie der Graph der Funktion \(k\) aus dem Graphen der Funktion \(f\) aus Aufgabe 1 hervorgeht.

    (2 BE)

  • Berechnen Sie einen Näherungswert für \(\displaystyle \int_{0}^{1} h(x)\,dx\), indem Sie den Zusammenhang \(\displaystyle \int_{0}^{1}h(x)\,dx \approx \int_{0}^{1}k(x)\,dx\) verwenden. Geben Sie die Bedeutung dieses Wertes im Sachzusammenhang an.

    (5 BE)

  • Gegeben ist die Funktion \(f\) mit \(f(x) = x^3 - 6x^2 + 11x - 6\) und \(x \in \mathbb R\).

    Weisen Sie nach, dass der Wendepunkt des Graphen von \(f\) auf der Geraden mit der Gleichung \(y = x - 2\) liegt.

    (3 BE)

  • Der Graph von \(f\) wird verschoben. Der Punkt \((2|0)\) des Graphen der Funktion \(f\) besitzt nach der Verschiebung die Koordinaten \((3|2)\). Der verschobene Graph gehört zu einer Funktion \(h\). Geben Sie eine Gleichung von \(h\) an.

    (2 BE)

  • Zeigen Sie, dass \(\displaystyle F(b) = \int_{3}^{b} f(x) \, dx\) mit \(b \in \mathbb R\) gilt.

    (2 BE)

  • Die Funktion \(F\) ist die in \(\mathbb R\) definierte Stammfunktion von \(f\) mit \(F(3) = 0\).

    Geben Sie mithilfe der Abbildung einen Näherungswert für die Ableitung von \(F\) an der Stelle \(x = 2\) an.

    (1 BE)

  • Die Abbildung zeigt den Graphen der in \(\mathbb R\) definierten Funktion \(f\).

    Abbildung zu Teilaufgabe 5 - Analysis 1 - Prüfungsteil A . Mathematik Abitur Bayern 2016

    Bestimmen Sie mithilfe der Abbildung einen Näherungswert für \(\displaystyle \int_{3}^{5} f(x) \,dx\).

    (2 BE)

  • Begründen Sie, dass \(2{,}5\) die \(x\)-Koordinate des Wendepunkts von \(G_{f}\) ist.

    (2 BE)

  • Gegeben ist eine in \(\mathbb R\) definierte ganzrationale Funktion \(f\) dritten Grades, deren Graph \(G_{f}\) an der Stelle \(x = 1\) einen Hochpunkt und an der Stelle \(x = 4\) einen Tiefpunkt besitzt.

    Begründen Sie, dass der Graph der Ableitungsfunktion \(f'\) von \(f\) eine Parabel ist, welche die \(x\)-Achse in den Punkten \((1|0)\) und \((4|0)\) schneidet und nach oben geöffnet ist.

    (3 BE)

  • Skizzieren Sie im Bereich \(-1 \leq x \leq 4\) den Graphen einer in \(\mathbb R\) definierten Funktion \(f\) mit den folgenden Eigenschaften:

    ● \(f\) ist nur an der Stelle \(x = 3\) nicht differenzierbar.

    ● \(f(0)\) = 2 und für die Ableitung \(f'\) von \(f\) gilt: \(f'(0) = -1\).

    ● Der Graph von \(f\) ist im Bereich \(-1 < x < 3\) linksgekrümmt.

    (3 BE)