Analysis 1

  • Zeigen Sie, dass der Graph der in \(\mathbb R\) definierten Funktion \(g \colon x \mapsto x^{2} \cdot \sin{x}\) punktsymmetrisch bezüglich des Koordinatenursprungs ist, und geben Sie den Wert des Integrals \(\displaystyle \int_{-\pi}^{\pi} x^{2} \cdot \sin{x}\, dx\) an.

    (3 BE)

  • Gegeben ist die Funktion \(f \colon x \mapsto \sqrt{1 - \ln{x}}\) mit maximaler Definitionsmenge \(D\).

    Bestimmen Sie \(D\).

    (2 BE)

  • Die Abbildung zeigt den Graphen der in \(\mathbb R\) definierten Funktion \(f\).

    Abbildung zu Teilaufgabe 5 - Analysis 1 - Prüfungsteil A . Mathematik Abitur Bayern 2016

    Bestimmen Sie mithilfe der Abbildung einen Näherungswert für \(\displaystyle \int_{3}^{5} f(x) \,dx\).

    (2 BE)

  • Geben Sie jeweils den Term und den Definitionsbereich einer Funktion an, die die angegebene(n) Eigenschaft(en) besitzt.

    Der Punkt \((2|0)\) ist ein Wendepunkt des Graphen von \(g\).

    (2 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto e^{\frac{1}{2}x} + e^{-\frac{1}{2}x}\). Der Graph von \(f\) wird mit \(G_{f}\) bezeichnet.

    Bestimmen Sie die Koordinaten des Schnittpunkts von \(G_{f}\) mit der \(y\)-Achse und begründen Sie, dass \(G_{f}\) oberhalb der \(x\)-Achse verläuft.

    (2 BE)

  • Ermitteln Sie das Symmetrieverhalten von \(G_{f}\) sowie das Verhalten von \(f\) für \(x \to - \infty\) und für \(x \to +\infty\).

    (3 BE)

  • Zeigen Sie, dass für die zweite Ableitung \(f''\) von \(f\) die Beziehung \(f''(x) = \frac{1}{4} \cdot f(x)\) für \(x \in \mathbb R\) gilt. Weisen Sie nach, dass \(G_{f}\) linksgekrümmt ist.

    (zur Kontrolle: \(f'(x) = \frac{1}{2} \cdot \left( e^{\frac{1}{2}x} + e^{-\frac{1}{2}x} \right)\))

    (4 BE)

  • Bestimmen Sie Lage und Art des Extrempunkts von \(G_{f}\).

    (3 BE)

  • Berechnen Sie die Steigung der Tangente \(g\) an \(G_{f}\) im Punkt \(P(2|f(2))\) auf eine Dezimale genau. Zeichnen Sie den Punkt \(P\) und die Gerade \(g\) in ein Koordinatensystem ein (Platzbedarf im Hinblick auf das Folgende: \(-4 \leq x \leq 4\), \(-1 \leq y \leq 9\)).

    (3 BE)

  • Berechnen Sie \(f(4)\), im Hinblick auf eine der folgenden Aufgaben auf zwei Dezimalen genau, und zeichnen Sie unter Berücksichtigung der bisherigen Ergebnisse \(G_{f}\) im Bereich \(-4 \leq x \leq 4\) in das Koordinatensystem aus Aufgabe 1e ein.

    (4 BE)

  • Die als Kurvenlänge \(L_{a;b}\) bezeichnete Länge des Funktionsgraphen von \(f\) zwischen den Punkten \((a|f(a))\) und \((b|f(b))\) mit \(a < b\) lässt sich mithilfe der Formel \(\displaystyle L_{a;b} = \int_{a}^{b} \sqrt{1 + [f'(x)]^{2}} \, dx\) berechnen.

    Bestimmen Sie mithilfe der Beziehung aus Aufgabe 1g die Kurvenlänge \(L_{0;b}\) des Graphen von \(f\) zwischen den Punkten \((0|f(0))\) und \((b|f(b))\) mit \(b > 0\).

    (Ergebnis: \(L_{0;b} = e^{\frac{1}{2}b} - e^{-\frac{1}{2}b}\))

    (4 BE)

  • Zeigen Sie durch Rechnung, dass für \(x \in \mathbb R\) die Beziehung \(\frac{1}{4} \cdot [f(x)]^{2} - [f'(x)]^{2} = 1\) gilt.

    (3 BE)

  • Die Enden eines Seils werden an zwei vertikalen Masten, die 8,00 m voneinander entfernt sind, in gleicher Höhe über dem Erdboden befestigt. Der Graph \(G_{f}\) aus Aufgabe 1 beschreibt im Bereich \(-4 \leq x \leq 4\) modellhaft den Verlauf des Seils, wobei die Fußpunkte \(F_{1}\) und \(F_{2}\) der Masten durch die Punkte \((-4|0)\) bzw. \((4|0)\) dargestellt werden (vgl. Abbildung). Eine Längeneinheit im Koordinatensystem entspricht einem Meter in der Realität.

    Abbildung zu Teilaufgabe 2 - Analysis 1 - Prüfungsteil B - Mathematik Abitur Bayern 2016

     

    Der Höhenunterschied zwischen den Aufhängepunkten und den tiefsten Punkt des Seils wird als Durchhang bezeichnet. Berechnen Sie auf der Grundlage des Modells den Durchhang des Seils auf Zentimeter genau.

    (2 BE)

  • Berechnen Sie auf der Grundlage des Modells die Größe des Winkels, den das Seil mit Mast 2 im Aufhängepunkt einschließt, sowie mithilfe der Kurvenlänge aus Aufgabe 1h die Länge des zwischen den Masten hängenden Seils auf Zentimeter genau.

    (5 BE)

  • Der Graph von \(f\) soll durch eine Parabel näherungsweise dargestellt werden. Dazu wird die in \(\mathbb R\) definierte quadratische Funktion \(q\) betrachtet, deren Graph den Scheitelpunkt \((0|2)\) hat und durch den Punkt \((4|f(4))\) verläuft.

    Ermitteln Sie den Term \(q(x)\) der Funktion \(q\), ohne dabei zu Runden.

    (4 BE)

  • Für jedes \(x \in \; ]0;4[\) wird der Abstand der vertikal übereinander liegenden Punkte \((x|q(x))\) und \((x|f(x))\) der Graphen von \(q\) bzw. \(f\) betrachtet, wobei in diesem Bereich \(q(x) > f(x)\) gilt. Der größte dieser Abstände ist ein Maß dafür, wie gut die Parabel den Graphen \(G_{f}\) im Bereich \(0 < x < 4\) annähert. Beschreiben Sie die wesentlichen Schritte, mithilfe derer man diesen größten Abstand rechnerisch bestimmen kann.

    (3 BE)

  • Bestimmen Sie den Wert \(x \in D\) mit \(f(x) = 2\).

    (2 BE)

  • Beschreiben Sie, wie \(G_{g}\) schrittweise aus dem Graphen der in \(\mathbb R^{+}_{0}\) definierten Funktion \(w \colon x \mapsto \sqrt{x}\) hervorgeht, und geben Sie die Wertemenge von \(g\) an.

    (4 BE)

  • Gegeben ist die Funktion \(g \colon x \mapsto 2 \cdot \sqrt{4 + x} - 1\) mit maximaler Definitionsmenge \(D_{g}\). Der Graph von \(g\) wird mit \(G_{g}\) bezeichnet.

    Geben Sie \(D_{g}\) und die Koordinaten des Schnittpunkts von \(G_{g}\) mit der \(y\)-Achse an.

    (2 BE)

  • Eine Funktion \(f\) ist durch \(f(x) = 2 \cdot e^{\frac{1}{2}x} - 1\) mit \(x \in \mathbb R\) gegeben.

    Ermitteln Sie die Nullstelle der Funktion \(f\).

    (2 BE)