Stochastik 2

  • Nebenstehende Vierfeldertafel gehört zu einem Zufallsexperiment mit den stochastisch unabhängigen Ereignissen \(A\) und \(B\). Tragen Sie alle fehlenden Wahrscheinlichkeiten ein.

    Abbildung Teilaufgabe 1a Stochastik 2 Mathematik Abitur Bayern 2017 A

     

    (3 BE)

  • Im Folgenden ist \(n = 200\). Die Zufallsgröße \(X\) beschreibt die Anzahl der Personen unter den ausgewählten Personen, die an einer Allergie leiden. Bestimmen Sie die Wahrscheinlichkeit dafür, dass der Wert der binomialverteilten Zufallsgröße \(X\) höchstens um eine Standardabweichung von ihrem Erwartungswert abweicht.

    (5 BE)

  • Ein Süßwarenunternehmen stellt verschiedene Sorten Fruchtgummis her.

    Luisa nimmt an einer Betriebsbesichtigung des Unternehmens teil. Zu Beginn der Führung bekommt sie ein Tütchen mit zehn Gummibärchen, von denen fünf weiß. zwei rot und drei grün sind. Luisa öffnet das Tütchen und nimmt, ohne hinzusehen, drei Gummibärchen heraus. Berechnen Sie die Wahrscheinlichkeit dafür, dass die drei Gummibärchen die gleiche Farbe haben.

    (3 BE)

  • Jeder sechste Besucher eines Volksfests trägt ein Lebkuchenherz um den Hals. Während der Dauer des Volksfests wird 25-mal ein Besucher zufällig ausgewählt. Die Zufallsgröße \(X\) beschreibt die Anzahl der ausgewählten Besucher, die ein Lebkuchenherz tragen.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass unter den ausgewählten Besuchern höchstens ein Besucher ein Lebkuchenherz trägt.

    (2 BE)

  • Die Kunststoffteile werden aus Kunststoffgranulat hergestellt. Nach einem Wechsel des Granulats vermutet der Produktionsleiter, dass sich der Anteil der fehlerhaften Teile reduziert hat. Um einen Anhaltspunkt dafür zu gewinnen, ob die Vermutung gerechtfertigt ist, soll die Nullhypothese „Der Anteil der fehlerhaften Teile beträgt mindestens 4 %." auf der Grundlage einer Stichprobe von 200 Teilen auf einem Signifikanzniveau von 5 % getestet werden.

    Bestimmen sie die zugehörige Entscheidungsregel.

    (4 BE)

  • Beschreiben Sie im Sachzusammenhang die Bedeutung des Terms \(1 - P(X \geq 275)\), wobei \(X\) eine binomial verteilte Zufallsgröße mit den Parametern \(n = 300\) und \(p = 0{,}95\) bezeichnet.

    (2 BE)

  • Der Vortest kann als einseitiger Hypothesentest mit einem Signifikanzniveau von 3 % gedeutet werden. Geben Sie dazu die Nullhypothese sowie den Ablehnungsbereich an.

    (2 BE)

  • Ein Unternehmen lässt im Rahmen von Bewerbungsverfahren graphologische Gutachten zu den Personen erstellen, die sich um eine Stelle bewerben. Im Mittel werden 25 % der Bewerber aufgrund ihres graphologischen Gutachtens abgewiesen. Für eine Stelle bewerben sich 20 Personen.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Anzahl derjenigen Bewerber, die aufgrund ihres graphologischen Gutachtens abgelehnt werden, kleiner als die dafür im Mittel zu erwartende Anzahl ist.

    (3 BE)

  • Kann die Wahrscheinlichkeit dafür, dass eine Zufallsvariable einen Wert annimmt, der kleiner als ihr Erwartungswert ist, größer als 50 % sein? Begründen Sie Ihre Antwort.

    (4 BE)

  • Das Glücksrad wird zweimal gedreht. Untersuchen Sie, ob die Ereignisse \(C\) und \(D\) stochastisch unabhängig sind.

    \(C\): „Die Summe der erzielten Zahlen ist kleiner als 4."

    \(D\): „Das Produkt der erzielten Zahlen ist 2 oder 3."

    (5 BE) 

  • Gegeben ist die Zufallsgröße \(X\) mit der Wertemenge \(\{0;1;2;3;4;5\}\). Die Wahrscheinlichkeitsverteilung von \(X\) ist symmetrisch, d. h. es gilt \(P(X = 0) = P(X = 5)\), \(P(X = 1) = P(X = 4)\), \(P(X = 2) = P(X = 3)\).

    Die Tabelle zeigt die Wahrscheinlichkeitswerte \(P(X \leq k)\) für \(k \in \{0; 1; 2\}\).

    Tabelle Aufgabe a,b Stochastik 1 Prüfungsteil A Mathematik Abitur Bayern 2021

    Tragen Sie die fehlenden Werte in die Tabelle ein.

    (2 BE)

  • Das Baumdiagramm in Abbildung 2 gehört zu einem Zufallsexperiment mit den stochastisch unabhängigen Ereignissen \(A\) und \(B\). Bestimmen Sie die Wahrscheinlichkeit des Ereignisses \(B\).

    Abbildung 2 Aufgabe 3 Stochastik 2 Mathematik Abitur Bayern 2019 AAbb. 2

     

    (3 BE)

  • Die Zufallsgröße \(X\) beschreibt die Summe der beiden erzielten Zahlen. Bestimmen Sie, für welchen Wert von \(p\) die Zufallsgröße \(X\) den Erwartungswert 3 hat.

    (4 BE)

  • Das neue Granulat ist teurer als das vorherige. Geben Sie an, welche Überlegung zur Wahl der Nullhypothese geführt haben könnte, und begründen Sie Ihre Angabe.

    (3 BE)

  • In einem Supermarkt erhalten Kunden abhängig vom Wert ihres Einkaufs eine bestimmte Anzahl von Päckchen mit Tierbildern, die in ein Sammelalbum eingeklebt werden können. Jedes Päckchen enthält fünf Bilder. Im Sammelalbum sind Plätze für insgesamt 200 verschiedene Bilder vorgesehen. Die Bilder werden jeweils in großer Stückzahl mit der gleichen Häufigkeit produziert und auf die Päckchen zufällig verteilt, wobei sich die Bilder in einem Päckchen nicht unterscheiden müssen.

    Begründen Sie, dass der Term \(\dfrac{200 \cdot 199 \cdot 198 \cdot 197 \cdot 196}{200^5}\) die Wahrscheinlichkeit dafür beschreibt, dass sich in einem Päckchen fünf verschiedene Tierbilder befinden.

    (2 BE)

  • Einem Jungen fehlen in seinem Sammelalbum noch 15 Bilder. Er geht mit seiner Mutter zum Einkaufen und erhält anschließend zwei Päckchen mit Tierbildern. Bestimmen Sie die Wahrscheinlichkeit dafür, dass die beiden Päckchen nur Bilder enthalten, die der Junge bereits in seinem Sammelalbum hat.

    (3 BE)

  • Bei Kindern besonders beliebt sind die 3D-Bilder, auf denen die Tiere dreidimensional erscheinen. 20 der 200 für ein Sammelalbum vorgesehenen Bilder sind 3D-Bilder.

    Ermitteln Sie, wie viele Päckchen ein Kind mindestens benötigt, um mit einer Wahrscheinlichkeit von mehr als 99 % mindestens ein 3D-Bild zu erhalten.

    (5 BE)

  • Mit dem Glücksrad wird ein Spiel durchgeführt. Jeder Spieler darf das Glücksrad beliebig oft drehen. Beendet er das Spiel selbst, bevor er eine „0" erzielt, so wird ihm die Summe der erzielten Zahlen in Euro ausgezahlt. Erzielt er eine „0", so ist das Spiel dadurch beendet und es erfolgt keine Auszahlung.

    Ein erster Spieler entscheidet sich vor dem Spiel dafür, das Glücksrad, sofern er keine „0" erzielt, viermal zu drehen und danach das Spiel zu beenden. Bestimmen Sie die Wahrscheinlichkeit dafür, dass er eine Auszahlung erhält.

    (2 BE) 

  • Begründen Sie, dass \(X\) nicht binomialverteilt ist.

    (3 BE)

  • Beschreiben Sie im Sachzusammenhang ein Ereignis, dessen Wahrscheinlichkeit mit dem Term \(\sum \limits_{i\,=\,5}^{8}B\left( 25;\frac{1}{6};i \right)\) berechnet werden kann.

    (2 BE)