Mathematik Abitur Bayern 2022

  • Betrachtet wird nun die Schar der in \(\mathbb R\) definierten Funktionen \(f_a \colon x \mapsto x \cdot e^{-\frac{1}{2}a \cdot x^2 + \frac{1}{2}}\) mit \(a \in \mathbb R\).

    Zeigen Sie, dass genau ein Graph der Schar den Punkt \((1|1)\) enthält, und geben Sie den zugehörigen Wert von \(a\) an.

    (3 BE)

  • Betrachtet werden die in \(\mathbb R\) definierten Funktionen \(f\) und \(F\), wobei \(F\) eine Stammfunktion von \(f\) ist. Abbildung 1 zeigt den Graphen \(G_F\) von \(F\).

    Abbildung 1 Analysis 2 Prüfungsteil A Mathematik Abitur Bayern 2022Abb. 1

    Bestimmen Sie den Wert des Integrals \(\displaystyle \int_1^7 f(x)dx\).

    (2 BE)

  • Geben Sie einen Term einer gebrochen-rationalen Funktion an, die die folgenden Eigenschaften hat: Die Funktion \(h\) ist in \(\mathbb R\) definiert; ihr Graph besitzt die Gerade mit der Gleichung \(y = 3\) als waagrechte Asymptote und schneidet die \(y\)-Achse im Punkt \((0|4)\).

    (3 BE)

  • Gegeben ist die in \(\mathbb R^+\) definierte Funktion \(g \colon x \mapsto \dfrac{4}{x}\). Abbildung 1 zeigt den Graphen von \(g\).

    Abbildung 1 Analysis 1 Prüfungsteil A Mathematik Abitur Bayern 2022Abb. 1

    Berechnen Sie den Wert des Integrals \(\displaystyle \int_1^e g(x)dx\).

    (2 BE)

  • Ermitteln Sie grafisch diejenige Stelle \(x_0 \in \mathbb R^+\), für die gilt: Die lokale Änderungsrate von \(g\) an der Stelle \(x_0\) stimmt mit der mittleren Änderungsrate von \(g\) im Intervall \([1;4]\) überein.

    (3 BE)

  • In einem Modell für einen Küstenabschnitt am Meer beschreibt die \(x_1x_2\)-Ebene die horizontale Wasseroberfläche und die Gerade \(g\) die Uferlinie. Die Ebene \(E\) stellt im betrachteten Abschnitt den Meeresboden dar. Eine Boje schwimmt auf der Wasseroberfläche an der Stelle, die dem Koordinatenursprung \(O\) entspricht (vgl. Abbildung). Eine Längeneinheit entspricht einem Meter in der Realität.

    Abbildung Geometrie 1 Prüfungsteil B Mathematik Abitur Bayern 2022

    Bestimmen Sie die Größe des Winkels, unter dem der Meeresboden gegenüber der Wasseroberfläche abfällt.

    (3 BE)

  • Um Geld für die beiden Aktionen einzunehmen, bietet die SMV auf dem Schulfest das Spiel „2022" an. Bei dem Spiel werden zwei Glücksräder mit drei bzw. vier gleich großen Sektoren verwendet, die wie in Abbildung 1 beschriftet sind. Für einen Einsatz von 3 € darf man jedes der beiden Glücksräder einmal drehen. Für jede Ziffer 2, die auf den erzielten Sektoren steht, werden 2 € ausbezahlt. Die Zufallsgröße \(Z\) beschreibt, wie oft die Ziffer 2 auf den erzielten Sektoren insgesamt vorkommt.

    Abbildung 1 Stochastik 2 Prüfungsteil B Mathematik Abitur Bayern 2022

    Die Tabelle zeigt die Wahrscheinlichkeitsverteilung von \(Z\). Bestimmen Sie die Wahrscheinlichkeiten \(p_1\) und \(p_2\).

    \(k\) \(0\) \(1\) \(2\) \(3\)
    \(P(Z = k)\) \(\dfrac{1}{3}\) \(p_1\) \(p_2\) \(\dfrac{1}{12}\)

    (zur Kontrolle: \(p_2 = \frac{1}{4}\))

    (3 BE)

  • Um die Wirksamkeit eines Pflanzenschutzmittels gegen Pilzbefall nachzuweisen, wurden zahlreiche Versuche durchgeführt, bei denen landwirtschaftliche Nutzpflanzen zunächst mit dem Pflanzenschutzmittel behandelt und anschließend mit Pilzsporen besprüht wurden. Im Mittel sind dabei 5 % der Pflanzen von Pilzen befallen worden.

    Bei einem weiteren solchen Versuch mit \(n\) Pflanzen beschreibt die Zufallsgröße \(X_n\) die Anzahl der Pflanzen, die von Pilzen befallen werden. Im Folgenden soll davon ausgegangen werden, dass \(X_n\) binomialverteilt ist mit den Parametern \(n\) und \(p = 0{,}05\).

    Es werden 15 Pflanzen mit dem Pflanzenschutzmittel behandelt und anschließend mit Pilzsporen besprüht. Bestimmen Sie jeweils die Wahrscheinlichkeit folgender Ereignisse:

    \(E_1\): „Keine der Pflanzen wird von Pilzen befallen."

    \(E_2\): „Höchstens zwei Pflanzen werden von Pilzen befallen."

    \(E_3\): „12 oder 13 Pflanzen bleiben ohne Pilzbefall."

    (6 BE)

  • Betrachtet wird die Tangente an den Graphen von \(f_a\) im Punkt \((0|f_a (0))\). Bestimmen Sie diejenigen Werte von \(a\), für die diese Tangente eine positive Steigung hat und zudem die \(x\)-Achse in einem Punkt schneidet, dessen \(x\)-Koordinate größer als \(\dfrac{1}{2}\) ist.

    (4 BE)

  • Gegeben ist die Funktion \(g \colon x \mapsto \dfrac{2x^2}{x^2 - 9}\) mit maximaler Definitionsmenge \(D_g\).

    Geben Sie \(D_g\) sowie eine Gleichung der waagrechten Asymptote des Graphen von \(g\) an.

    (2 BE)

  • Zeigen Sie, dass der Graph von \(g\) in genau einem Punkt eine waagrechte Tangente besitzt.

    (3 BE)

  • Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{x^2 + 2x}{x+1}\) mit maximaler Definitionsmenge \(D_f\). Geben Sie \(D_f\) und die Nullstellen von \(f\) an

    (2 BE) 

  • Bestimmen Sie den Funktionswert von \(f\) an der Stelle 1; veranschaulichen Sie Ihr Vorgehen in Abbildung 1.

    (3 BE)

  • Begründen Sie ohne Rechnung, dass \(g\) in der \(x_1x_2\)-Ebene liegt.

    (1 BE)

  • Von der Boje aus taucht der Fotograf senkrecht bezüglich der Wasseroberfläche nach unten bis zu einer Stelle, deren Abstand zum Meeresboden genau drei Meter beträgt und im Modell durch den Punkt \(K\) dargestellt wird.

    Bestimmen Sie rechnerisch, welche Tiefe unter der Wasseroberfläche der Fotograf bei diesem Tauchvorgang erreicht.

    (5 BE)

  • Ermitteln Sie, wie viele Spiele durchgeführt werden müssen, damit der Erwartungswert der Einnahme für die beiden Aktionen 300 € beträgt.

    (4 BE)

  • Betrachtet wird die Tangente an den Graphen von \(f_a\) im Punkt \((0|f_a (0))\). Bestimmen Sie diejenigen Werte von \(a\), für die diese Tangente eine positive Steigung hat und zudem die \(x\)-Achse in einem Punkt schneidet, dessen \(x\)-Koordinate größer als \(\dfrac{1}{2}\) ist.

    (4 BE)

  • Gegeben sind die im Folgenden beschriebenen Zufallsgrößen \(X\) und \(Y\):

    • Ein Würfel, dessen Seiten mit den Zahlen von 1 bis 6 durchnummeriert sind, wird zweimal geworfen. \(X\) gibt die dabei erzielte Augensumme an.
    • Aus einem Behälter mit 60 schwarzen und 40 weißen Kugeln wird zwölfmal nacheinander jeweils eine Kugel zufällig entnommen und wieder zurückgelegt. \(Y\) gibt die Anzahl der entnommenen schwarzen Kugeln an.

    Begründen Sie, dass die Wahrscheinlichkeit \(P(X = 4)\) mit der Wahrscheinlichkeit \(P(X = 10)\) übereinstimmt.

    (2 BE)

  • Die Wahrscheinlichkeitsverteilungen von \(X\) und \(Y\) werden jeweils durch eines der folgenden Diagramme I, II und III dargestellt. Ordnen Sie \(X\) und \(Y\) jeweils dem passenden Diagramm zu und begründen Sie Ihre Zuordnung.

    Diagramm I Stochastik 1 Prüfungsteil A Mathematik Abitur Bayern 2022

    Diagramm II Stochastik 1 Prüfungsteil A Mathematik Abitur Bayern 2022

    Diagramm III Stochastik 1 Prüfungsteil A Mathematik Abitur Bayern 2022

    (3 BE)

  • Die Abbildung zeigt das Netz eines Würfels, von dem nur drei Seiten beschriftet sind.

    Abbildung Stochastik 2 Prüfungsteil A Mathematik Abitur Bayern 2022

    Der Würfel wird so lange geworfen, bis die Zahl 1 zum ersten Mal erzielt wird. Berechnen Sie die Wahrscheinlichkeit dafür, dass genau viermal gewürfelt wird.

    (2 BE)

Seite 2 von 4