Funktionenschar

  • Betrachtet wird nun die Schar der in \(\mathbb R\) definierten Funktionen \(h_{k} \colon x \mapsto (1 - kx^{2}) \cdot e^{-x}\) mit \(k \in \mathbb R\). Der Graph von \(h_{k}\) wird mit \(G_{k}\) bezeichnet. Für \(k = 1\) ergibt sich die bisher betrachtetet Funktion \(f\).

    Geben Sie in Abhängigkeit von \(k\) die Anzahl der Nullstellen von \(h_{k}\) an.

    (2 BE)

  • Für einen bestimmten Wert von \(k\) besitzt \(G_{k}\) zwei Schnittpunkte mit der \(x\)-Achse, die voneinander den Abstand 4 haben. Berechnen Sie diesen Wert.

    (3 BE)

  • Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f_a\) mit \(f_a(x) = a \cdot e^{-x} + 3\) und \(a \in \mathbb R \backslash \{0\}\).

    Zeigen Sie, dass \(f'_a(0) = -a\) gilt.

    (1 BE)

  • Ermitteln Sie die Koordinaten der Punkte, die alle Graphen der Schar gemeinsam haben.

    (3 BE) 

  • Alle Extrempunkte der Graphen der Schar liegen auf einer Gerade. Begründen Sie, dass es sich dabei um die Gerade mit der Gleichung \(y = x\) handelt.

    (3 BE)

  • Betrachtet wird die Tangente an den Graphen von \(f_a\) im Punkt \((0|f_a (0))\). Bestimmen Sie diejenigen Werte von \(a\), für die diese Tangente eine positive Steigung hat und zudem die \(x\)-Achse in einem Punkt schneidet, dessen \(x\)-Koordinate größer als \(\dfrac{1}{2}\) ist.

    (4 BE)

  • Die Graphen der Schar lassen sich in die beiden folgenden Gruppen I und II einteilen:

    I   Der Graph hat genau zwei Extrempunkte.

    II  Der Graph hat keine Extrempunkte.

    Die Abbildung 2 zeigt einen Graphen der Gruppe I, die Abbildung 3 einen Graphen der Gruppe II.

    Abbildung 2 Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2022Abb. 2

    Abbildung 3 Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2022Abb. 3

    Die Extremstellen von \(f_a\) stimmen mit den Lösungen der Gleichung \(a \cdot x^2 = 1\) überein.

    Geben Sie zu jeder der beiden Gruppen I und II alle zugehörigen Werte von \(a\) an und begründen Sie Ihre Angabe.

    (3 BE)

  • Betrachtet wird eine Schar von Funktionen \(h_{k}\) mit \(k \in \mathbb R^{+}\), die sich nur in ihren jeweiligen Definitionsbereichen \(D_{k}\) unterscheiden.

    Es gilt \(h_{k} \colon x \mapsto \cos{x}\) mit \(D_{k} = [0;k]\).

    Abbildung 4 zeigt den Graphen der Funktion \(h_{7}\). Geben Sie den größtmöglichen Wert von \(k\) an, sodass die zugehörige Funktion \(h_{k}\) umkehrbar ist. Zeichnen Sie für diesen Wert von \(k\) den Graphen der Umkehrfunktion von \(h_{k}\) in Abbildung 4 ein und berücksichtigen Sie dabei insbesondere den Schnittpunkt der Graphen von Funktion und Umkehrfunktion.

    Abbildung 4 Aufgabe 4 Analysis 1 Mathematik Abitur Bayern 2019 A

    (3 BE)

  • Für jeden Wert von \(a\) besitzt der Graph von \(f_{a}\) genau zwei Extrempunkte. Ermitteln Sie denjenigen Wert von \(a\), für den der Graph der Funktion \(f_{a}\) an der Stelle \(x = 3\) einen Extrempunkt hat.

    (3 BE)

  • Für jeden Wert von \(a\) mit \(a \in \mathbb R^{+}\) ist eine Funktion \(f_{a}\) durch \(f_{a}(x) = \dfrac{1}{a} \cdot x^{3} - x\) mit \(x \in \mathbb R\) gegeben.

    Eine der beiden Abbildungen stellt einen Graphen von \(f_{a}\) dar. Geben Sie an, für welche Abbildung dies zutrifft. Begründen Sie Ihre Antwort.

    Abbildung 1 Aufgabe 5a Analysis 1 Mathematik Abitur Bayern 2018 A
    Abbildung 2 Analysis 1 Mathematik Abitur Bayern 2018 A

     

    (2 BE)

  • Für jeden Wert von \(a\) besitzt der Graph von \(f_{a}\) genau zwei Extrempunkte. Ermitteln Sie denjenigen Wert von \(a\), für den der Graph der Funktion \(f_{a}\) an der Stelle \(x = 3\) einen Extrempunkt hat.

    (3 BE)

  • Der Hochpunkt des Graphen von \(f\) liegt auf einer Seite eines Quadrats; zwei Seiten dieses Quadrats liegen auf den Koordinatenachsen (vgl. Abbildung 1). Der Flächeninhalt des Quadrats stimmt mit dem Inhalt des Flächenstücks, das der Graph von \(f\) mit der \(x\)-Achse einschließt, überein. Bestimmen Sie den Wert von \(a\).

    Abbildung 1 Analysis 2 Prüfungsteil A Mathematik Abitur Bayern 2023Abb. 1

    (3 BE) 

  • Betrachtet werden nun die Funktionen \(f_{n}\) mit \(n > 4\). Geben Sie in Abhängigkeit von \(n\) das Verhalten dieser Funktionen für \(x \to +\infty\) und für \(x \to -\infty\) an.

    (3 BE)

  • Gegeben ist die Schar der in \(\mathbb R\) definierten Funktionen \(f_{n} \colon x \mapsto x^4 - 2x^n\) mit \(n \in \mathbb N\) sowie die in \(\mathbb R\) definierte Funktion \(f_{0} \colon x \mapsto x^4 - 2\).

    Die Abbildungen 1 bis 4 zeigen die Graphen der Funktionen \(f_{0}\), \(f_{1}\), \(f_{2}\) bzw. \(f_{4}\). Ordnen Sie jeder dieser Funktionen den passenden Graphen zu und begründen Sie drei Ihrer Zuordnungen durch Aussagen zur Symmetrie, zu den Schnittpunkten mit den Koordinatenachsen oder dem Verhalten an den Grenzen des Definitionsbereichs des jeweiligen Graphen.

    Abbildung 1 zu Teilaufgabe 2a Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 1

    Abbildung 2 zu Teilaufgabe 2a Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 2

    Abbildung 3 zu Teilaufgabe 2a Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 3

    Abbildung 4 zu Teilaufgabe 2a Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 4

     

    (4 BE)

  • Gegeben ist die Schar der in \(\mathbb R\) definierten Funktionen \(f_{a} \colon x \mapsto xe^{ax}\) mit \(a \in \mathbb R \, \backslash \,\{0\}\). Ermitteln Sie, für welchen Wert von \(a\) die erste Ableitung von \(f_{a}\) an der Stelle \(x = 2\) den Wert 0 besitzt.

    (4 BE)

  • Betrachtet werden für \(k \in \mathbb R\) die in \(]-\infty;0]\) definierten Funktionen \(f_k \colon x \mapsto f(x) + k\). Somit gilt \(f_0(x) = f(x)\), wobei sich \(f_0\) und \(f\) im Definitionsbereich unterscheiden.

    Begründen Sie mithilfe der ersten Ableitung von \(\boldsymbol{f_k}\), dass \(f_k\) für jeden Wert von \(k\) umkehrbar ist. Skizzieren Sie in Abbildung 1 den Graphen der Umkehrfunktion von \(f_0\).

    (4 BE) 

  • Die Graphen von \(h_k\) und \(h'_k\) werden in der Abbildung 3 für \(k = 4\) beispielhaft für gerade Werte von \(k\) gezeigt, in der Abbildung 4 für \(k = 5\) beispielhaft für ungerade Werte von \(k\). Für \(k \geq 4\) werden die Punkte \(P(4|h_k(4))\), \(Q(4|h'_k(4))\), \(R(2|h_k(2))\) und \(S(2|h'_k(2))\) betrachtet. Diese Punkte sind jeweils Eckpunkte eines Vierecks.

    Abbildung 3 Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2023Abb. 3

    Abbildung 4 Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2023Abb. 4

    Begründen Sie dass jedes dieser Vierecke ein Trapez ist, und zeigen Sie, dass die folgende Aussage richtig ist:

    Für jeden geraden Wert von \(k\) mit \(k \geq 4\) stimmen der Flächeninhalt des Trapezes für \(k\) und der Flächeninhalt des Trapezes für \(k + 1\) überein.

    (7 BE) 

  • Zeigen Sie, dass für die erste Ableitung der Funktion \(I_T\) gilt:

    \[I'_T(x) = \frac{x^2 \cdot e^{\frac{x}{T}} \cdot \left [ 3 \cdot \left (1 - e^{-\frac{x}{T}} \right ) - \frac{x}{T} \right ]}{\left ( e^{\frac{x}{T}} - 1 \right )^2}\]

    Vergleichen Sie diesen Term mit dem der Funktion \(f\) aus Aufgabe 1 und begründen Sie, dass die Funktion \(I_T\) bei \(x = a \cdot T\) ihr einziges Maximum besitzt, wenn \(a\) die positive Nullstelle von \(f\) ist.

    (6 BE)

  • Jeder Körper sendet elektromagnetische Strahlung unterschiedlicher Frequenzen aus; die Intensität der Strahlung hängt von der Frequenz der Strahlung ab. Im Idealfall lässt sich diese Intensität nach Max Planck durch die Schar der in \(\mathbb R^+\) definierten Funktionen

    \[I_T\,\colon x \mapsto \frac{x^3}{e^{\frac{x}{T}} - 1}\]

    mit \(T \in \mathbb R^+\) beschreiben. Dabei ist \(x\) - bis auf eine Konstante - die Frequenz der Strahlung und \(T\) die Temperatur des Körpers in Kelvin.

    Die Abbildung zeigt die zu drei Werten des Parameters \(T\) gehörenden Graphen von \(I_T\).

    Abbildung zu Teilaufgabe 2a

    Bei der Bearbeitung der folgenden Aufgaben soll auf die Verwendung von Einheiten verzichtet werden.

    Weisen Sie anhand des Funktionsterms von \(I_T\) nach, dass der Wert der Intensität der Strahlung stets positiv ist.

    (3 BE)

  • Die folgenden Aussagen gelten für alle reellen Zahlen \(a\), \(a_1\) und \(a_2\):

    • \(f_a(0) = 0\)
    • \(f'_a(0) = f'_0(0)\)
    • \(f_{a_1}(x) = f_{a_2}(x) \enspace \Leftrightarrow \enspace a_1 = a_2\) oder \(x =0\)

    Geben Sie an, was sich aus diesen Aussagen hinsichtlich des Verlaufs der Graphen der Schar folgern lässt. 

    (3 BE)

Seite 2 von 3