Mathematik Abitur Bayern 2011 G8 Analysis I Teil 1 - Aufgaben mit Lösungen

Teilaufgabe 1

Bewertungen Abitur Lösungen 2011 G8 Analysis I

Bewertung: 90% - 36 Wertungen
90%

Gegeben ist die Funktion \(\displaystyle f : x \mapsto \frac{2x + 3}{4x + 5}\) mit maximaler Definitionsmenge \(D\). Geben Sie \(D\) an und ermitteln Sie einen möglichst einfachen Funktionsterm für die Ableitung \(f'\) von \(f\).

(4 BE)

Teilaufgabe 2

Bewertungen Abitur Lösungen 2011 G8 Analysis I

Bewertung: 90% - 35 Wertungen
90%

Zeigen Sie, dass \(F : x \mapsto \frac{1}{4}x^2 \cdot (2\ln x - 1)\) mit Definitionsmenge \(\mathbb R^+\) eine Stammfunktion der in \(\mathbb R^+\) definierten Funktion \(f : x \mapsto x \cdot \ln x\) ist. Bestimmen Sie den Term derjenigen Stammfunktion von \(f\), die in \(x = 1\) eine Nullstelle hat.

(5 BE)

Teilaufgabe 3

Bewertungen Abitur Lösungen 2011 G8 Analysis I

Bewertung: 90% - 36 Wertungen
90%

Die Anzahl der auf der Erde lebenden Menschen wuchs von 6,1 Milliarden zu Beginn des Jahres 2000 auf 6,9 Milliarden zu Beginn des Jahres 2010.Dieses Wachstum lässt sich näherungsweise durch eine Exponentialfunktion mit einem Term der Form \(N(x) = N_0 \cdot e^{k \cdot (x - 2000)}\) beschreiben, wobei \(N(x)\) die Anzahl der Menschen zu Beginn des Jahres \(x\) ist.

Bestimmen Sie \(N_0\) und \(k\).

(5 BE)

Teilaufgabe 4a

Bewertungen Abitur Lösungen 2011 G8 Analysis I

Bewertung: 89.14% - 35 Wertungen
89%

Betrachtet wird die Aussage \(\displaystyle \int_{0}^{\pi} \sin(2x)\,dx = 0\).

Machen Sie ohne Rechnung anhand einer sorgfältigen Skizze plausibel, dass die Aussage wahr ist.

(3 BE)

Teilaufgabe 4b

Bewertungen Abitur Lösungen 2011 G8 Analysis I

Bewertung: 90% - 34 Wertungen
90%

Weisen Sie mithilfe einer Stammfunktion die Gültigkeit der Aussage durch Rechnung nach.

(3 BE)