Periode der allgemeinen Sinusfunktion / Kosinusfunktion

  • Gegeben sind die in \(\mathbb R\) definierten Funktionen \(g_{a,c} \, \colon x \mapsto \sin (ax) + c\) mit \(a,c \in \mathbb R^+_0\).

    Geben Sie für jede der beiden folgenden Eigenschaften einen möglichen Wert für \(a\) und einen möglichen Wert für \(c\) so an, dass die zugehörige Funktion \(g_{a,c}\) diese Eigenschaft besitzt.

    α) Die Funktion\(g_{a,c}\) hat die Wertemenge \([0;2]\).

    β) Die Funktion \(g_{a,c}\) hat im Intervall \([0;\pi]\) genau drei Nullstellen.

    (3 BE)

  • Die Testperson benötigt für einen vollständigen Atemzyklus 4 Sekunden. Die Anzahl der Atemzyklen pro Minute wird als Atemfrequenz bezeichnet.

    Geben Sie zunächst die Atemfrequenz der Testperson an.

    Die Atemstromstärke eines jüngeren Menschen, dessen Atemfrequenz um 20 % höher ist als die der bisher betrachteten Testperson, soll durch eine Sinusfunktion der Form \(h \colon t \mapsto a \cdot \sin(b \cdot t)\) mit \(t \geq 0\) und \(b > 0\) beschrieben werden. Ermitteln Sie den Wert von \(b\).

    (4 BE)

  • Eine zweite Modellierung des Querschnitts der Tunnelwand verwendet eine Kosinusfunktion vom Typ \(k \colon x \mapsto 5 \cdot \cos(c \cdot x)\) mit \(c \in \mathbb R\) und Definitionsbereich \(D_{k} = [-5;5]\), bei der offensichtlich Bedingung II erfüllt ist.

    Bestimmen Sie \(c\) so, dass auch Bedingung I erfüllt ist, und berechnen Sie damit den Inhalt der Querschnittfläche des Tunnels.

    (zur Kontrolle: \(c = \frac{\pi}{10}\), Inhalt der Querschnittfläche: \(\frac{100}{\pi}\) m²)

    (5 BE)

  • Die Abbildung zeigt den Graphen der in \(\mathbb R\) definierten Funktion \(g \colon x \mapsto p + q \cdot \sin\left( \frac{\pi}{r}x \right)\) mit \(p,qr \in \mathbb N\).

    Abbildung Teilaufgabe 3a Analysis 2 Mathematik Abitur Bayern 2017 A

    Geben Sie \(p,q\) und \(r\) an.

    (3 BE)

  • Für \(0 \leq x \leq 5\) gilt, dass der Graph von \(f\) und der Graph einer trigonometrischen Funktion \(h\)

    ●  die gleichen Schnittpunkte mit der \(x\)-Achse besitzen,

    ●  beide nicht unterhalb der \(x\)-Achse verlaufen,

    ●  jeweils mit der \(x\)-Achse eine Fläche des Inhalts \(\frac{625}{72}\) einschließen.

    Bestimmen Sie einen Term einer solchen Funktion \(h\).

    (6 BE)

  • Betrachtet wird die Aussage \(\displaystyle \int_{0}^{\pi} \sin(2x)\,dx = 0\).

    Machen Sie ohne Rechnung anhand einer sorgfältigen Skizze plausibel, dass die Aussage wahr ist.

    (3 BE)