Mathematik Abitur Bayern 2012 Analysis I Teil 2 - Aufgaben mit Lösungen

Teilaufgabe 1a

Gegeben ist die Funktion \(f \colon x \mapsto \displaystyle \frac{2e^x}{e^x + 9}\) mit Definitionsbereich \(\mathbb R\). Abbildung 2 zeigt den Graphen \(G_f\) von \(f\,\).

Abbildung 2: Graph von fAbb. 2

Zeigen Sie rechnerisch, dass \(G_f\) genau einen Achsenschnittpunkt \(S\) besitzt, und geben Sie die Koordinaten von \(S\) an.

(2 BE)

Teilaufgabe 1b

Begründen Sie mithilfe des Funktionsterms von \(f\), dass \(\lim \limits_{x \, \to \, -\infty} f(x) = 0\) und \(\lim \limits_{x \, \to \, +\infty} f(x) = 2\) gilt.

(2 BE)

Teilaufgabe 1c

Weisen Sie rechnerisch nach, dass \(G_f\) in \(\mathbb R\) streng monoton steigt.

(zur Kontrolle: \(f'(x)= \displaystyle \frac{18e^x}{(e^x + 9)^2}\))

(3 BE)

Teilaufgabe 1d

Bestimmen Sie die Gleichung der Tangente an \(G_f\) im Achsenschnittpunkt \(S\).

(Ergebnis: \(y = 0{,}18x + 0{,}2\))

(2 BE)

Teilaufgabe 1f

Begründen Sie, dass \(f\) in \(\mathbb R\) umkehrbar ist. Geben Sie den Definitionsbereich und den Wertebereich der Umkehrfunktion \(f^{-1}\) an und zeichnen Sie den Graphen von \(f^{-1}\) in Abbildung 2 ein.

(6 BE)

Teilaufgabe 2a

Das Wachstum von Sonnenblumen der Sorte Alba lässt sich modellhaft mithilfe der Funktion \(f\) beschreiben. Beginnt man die Beobachtung zwei Wochen nach der Auskeimung einer Sonnenblume dieser Sorte, so liefert \(f(x)\) für \(x \in [0;4]\) im Modell die Höhe der Blume in Metern. Dabei ist \(x\) die seit Beobachtungsbeginn vergangene Zeit in Monaten. In den Aufgaben 2a bis 2d werden auschließlich Sonnenblumen der Sorte Alba betrachtet.

Berechnen Sie auf der Grundlage des Modells, um wie viele Zentimeter eine Sonnenblume innerhalb der ersten zwei Monate nach Beobachtungsbeginn wächst.

(2 BE)

Teilaufgabe 2b

Berechnen Sie auf der Grundlage des Modells, wie viele Monate nach Beobachtungsbeginn eine Sonnenblume eine Höhe von 1,5 Metern erreicht. Beschreiben Sie, wie man den Wert graphisch überprüfen kann.

(5 BE)

Teilaufgabe 2c

Im Modell gibt es einen Zeitpunkt \(x_M\), zu dem die Blumen am schnellsten wachsen. Bestimmen Sie mithilfe von Abbildung 2 einen Näherungswert für \(x_M\). Ermitteln Sie anschließend einen Näherungswert für die maximale Wachstumsrate in Zentimetern pro Tag.

(5 BE)

Teilaufgabe 2d

Ein Biologe nimmt an, dass sich das Wachstum der Blumen vor Beobachtungsbeginn näherungsweise durch die Gleichung der Tangente aus Aufgabe 1d beschreiben lässt. Untersuchen Sie mithilfe einer Rechnung, ob diese Annahme damit in Einklang steht, dass vom Zeitpunkt des Auskeimens bis zum Beobachtungsbeginn etwa zwei Wochen vergehen.

(4 BE)

Teilaufgabe 2e

Haben zu Beobachtungsbeginn Sonnenblumen der Sorte Tramonto die gleiche Höhe wie Sonnenblumen der Sorte Alba, so erreichen von da an die Sonnenblumen der Sorte Tramonto im Vergleich zu denen der Sorte Alba jede Höhe in der Hälfte der Zeit.

Das Wachstum von Sonnenblumen der Sorte Tramonto lässt sich modellhaft mithilfe einer in \(\mathbb R\) definierten Funktion \(g\) beschreiben, die eine Funktionsgleichung der Form I, II, oder III mit \(k \in \mathbb R^+\) besitzt:

\[\textsf{I}\enspace y = \frac{2e^{x+k}}{e^{x+k}+9}\]

\[\textsf{II}\enspace y = k \cdot \frac{2e^x}{e^x + 9}\]

\[\textsf{III}\enspace y = \frac{2e^{kx}}{e^{kx} + 9}\]

Dabei ist \(x\) die seit Beobachtungsbeginn vergangene Zeit in Monaten und \(y\) ein Näherungswert für die Höhe einer Blume in Metern.

Begründen Sie, dass weder eine Gleichung der Form I noch eine der Form II als Funktionsgleichung von \(g\) infrage kommt.

(4 BE)

Teilaufgabe 2f

Die Funktionsgleichung von \(g\) hat also die Form III. Geben Sie den passenden Wert von \(k\) an.

(1 BE)