Exponentialgleichung

  • An der Decke eines Hausflurs ist eine Deckenleuchte angebracht. Die Randlinie des Lichtkegels der Deckenleuchte kann näherungsweise durch die Funktion \(\displaystyle f \colon x \mapsto -3 \cdot \left( e^{0{,}4x} + e^{-0{,}5x} \right) + 9\) beschrieben werden mit \(x\) und \(y\) in Metern (vgl. Abbildung). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

     

    Abbildung zu Aufgabe 5 Klausur Q11 2 002

     

    a) Zeigen Sie, dass \(G_{f}\) nicht symmetrisch bezüglich des Koordinatensystems ist.

    b) Ersetzen Sie einen Zahl \((\neq 0)\) des Funktionsterms \(f(x)\) so, dass \(G_{f}\) symmetrisch ist und geben Sie die Art der Symmetrie an.

    Eine Feinjustierung der LEDs der Deckenleuchte verändert den Lichtkegel. Die Randlinie des veränderten Lichtkegels wird nun näherungsweise durch die Funktion \(g \colon x \mapsto -3 \cdot \left( e^{0{,}5x} + e^{-0{,}5x} \right) + 9\) beschrieben. Der Graph der Funktion \(g\) wird mit \(G_{g}\) bezeichnet.

    c) Bestimmen Sie die Schnittpunkte von \(G_{g}\) mit den Koordinatenachsen. Hinweis: Verwenden Sie die Substitution \(u = e^{0{,}5x}\) zur Bestimmung der Schnittpunkte mit der \(x\)-Achse.

    d) Berechnen Sie den Winkel, unter dem \(G_{g}\) die negative \(x\)-Achse schneidet.

    e) Die Position der Aufhängung der Deckenleuchte entspricht der Lage des Hochpunkts von \(G_{g}\). Die Aufhängung ist 85 cm von der Decke entfernt. Berechnen Sie die Raumhöhe \(h\) des Hausflurs, an dessen Decke die Deckenleuchte angebracht ist.

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto x \cdot e^{4 - 0{,}25x^{2}}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

     

    a) Überprüfen Sie das Symmetrieverhalten von \(G_{f}\) bezüglich des Koordinatensystems.

    b) Bestimmen Sie die Nullstelle(n) von \(f\) sowie die Lage und Art des/der Extrempunkte(s) von \(G_{f}\).

    c) Ermitteln Sie die Gleichung der Normale \(N\) im Punkt P\((0|f(0))\).

  • Bestimmen Sie die Nullstellen der Funktion \(a \, \colon x \mapsto \left( e^x - 2 \right) \cdot \left( x^3 - 2x \right)\) mit Definitionsbereich \(\mathbb R\).

    (3 BE)

  • In einem Labor wird ein Verfahren zur Reinigung von mit Schadstoffen kontaminiertem Wasser getestet. Die Funktion \(h\) aus Aufgabe 2 beschreibt für \(x \geq 0\) modellhaft die zeitliche Entwicklung des momentanen Schadstoffabbaus in einer bestimmten Wassermenge. Dabei bezeichnet \(h(x)\) die momentane Schadstoffabbaurate in Gramm pro Minute und \(x\) die seit Beginn des Reinigungsvorgangs vergangene Zeit in Minuten.

    Bestimmen Sie auf der Grundlage des Modells den Zeitpunkt \(x\), zu dem die momentane Schadstoffabbaurate auf 0,01 Gramm pro Minute zurückgegangen ist.

    (3 BE)

  • Eine Funktion \(f\) ist durch \(f(x) = 2 \cdot e^{\frac{1}{2}x} - 1\) mit \(x \in \mathbb R\) gegeben.

    Ermitteln Sie die Nullstelle der Funktion \(f\).

    (2 BE)

  • Eine Funktion \(f\) ist durch \(f(x) = 2 \cdot e^{\frac{1}{2}x} - 1\) mit \(x \in \mathbb R\) gegeben.

    Ermitteln Sie die Nullstelle der Funktion \(f\).

    (2 BE)

  • Begründen Sie rechnerisch, dass zu keinem Zeitpunkt die Anteile der drei Kernsorten gleich groß sind.

    (3 BE)

  • Bestimmen Sie denjenigen Wert \(x_{0}\), für den \(A(x_{0}) = 4\) gilt, und interpretieren sie Ihr Ergebnis im Sachzusammenhang. 

    (4 BE)

  • Es wird das Flächenstück zwischen \(G_{g}\) und der \(x\)-Achse im Bereich \(-\ln{3} \leq x \leq b\) mit \(b \in \mathbb R^{+}\) betrachtet. Bestimmen Sie den Wert von \(b\) so. dass die \(y\)-Achse dieses Flächenstück halbiert.

    (6 BE)

  • Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{e^x}{e^x - 2}\) mit maximalem Definitionsbereich \(D\).

    Bestimmen Sie \(D\) und geben Sie die Koordinaten des Schnittpunkts des Graphen von \(f\) mit der \(y\)-Achse an.

    (3 BE) 

  • Berechnen Sie denjenigen Wert von \(c\), für den \(\overline{QR} = 1\) gilt.

    (3 BE) 

  • Berechnen Sie auf der Grundlage des Modells, wie viele Monate nach Beobachtungsbeginn eine Sonnenblume eine Höhe von 1,5 Metern erreicht. Beschreiben Sie, wie man den Wert graphisch überprüfen kann.

    (5 BE)

  • Geben Sie für \(x \in \mathbb R^+\) die Lösungen der folgenden Gleichung an:

    \[(\ln x - 1) \cdot (e^x - 2) \cdot \left( \frac{1}{x} - 3 \right) = 0\]

    (3 BE)

  • Die Ursprungsgerade \(h\) mit der Gleichung \(y = \frac{2}{e^2} \cdot x\) schließt mit \(G_f\) für \(x \geq 0\) ein Flächenstück mit dem Inhalt \(B\) vollständig ein.

    Berechnen Sie die \(x\)-Koordinaten der drei Schnittpunkte der Geraden \(h\) mit \(G_f\) und zeichnen Sie die Gerade in Abbildung 2 ein. Berechnen Sie \(B\).

    (6 BE)